Singular Kähler-Einstein metrics
Authors:
Philippe Eyssidieux, Vincent Guedj and Ahmed Zeriahi
Journal:
J. Amer. Math. Soc. 22 (2009), 607-639
MSC (2000):
Primary 32W20, 32Q20, 32J27, 14J17
DOI:
https://doi.org/10.1090/S0894-0347-09-00629-8
Published electronically:
February 6, 2009
MathSciNet review:
2505296
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
We study degenerate complex Monge-Ampère equations of the form $(\omega +dd^c\varphi )^n = e^{t \varphi }\mu$ where $\omega$ is a big semi-positive form on a compact Kähler manifold $X$ of dimension $n$, $t \in \mathbb {R}^+$, and $\mu =f\omega ^n$ is a positive measure with density $f\in L^p(X,\omega ^n)$, $p>1$. We prove the existence and unicity of bounded $\omega$-plurisubharmonic solutions. We also prove that the solution is continuous under a further technical condition.
In case $X$ is projective and $\omega =\psi ^*\omega ’$, where $\psi :X\to V$ is a proper birational morphism to a normal projective variety, $[\omega ’]\in NS_{\mathbb {R}} (V)$ is an ample class and $\mu$ has only algebraic singularities, we prove that the solution is smooth in the regular locus of the equation.
We use these results to construct singular Kähler-Einstein metrics of non-positive curvature on projective klt pairs, in particular on canonical models of algebraic varieties of general type.
- Thierry Aubin, Équations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sci. Math. (2) 102 (1978), no. 1, 63–95 (French, with English summary). MR 494932
- Eric Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), no. 1-2, 1–40. MR 674165, DOI https://doi.org/10.1007/BF02392348
- Edward Bierstone and Pierre D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), no. 2, 207–302. MR 1440306, DOI https://doi.org/10.1007/s002220050141 [BCHM]BCHM C. Birkar, P. Cascini, C. D. Hacon, J. Mckernan: Existence of minimal models for varieties of log general type, arXiv:math/0610203.
- Zbigniew Błocki, Uniqueness and stability for the complex Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 52 (2003), no. 6, 1697–1701. MR 2021054, DOI https://doi.org/10.1512/iumj.2003.52.2346 [B2]B2 Z. Blocki: The Monge-Ampère equation on compact Kähler manifolds. Lecture Notes of a course given at the Winter School in Complex Analysis, Toulouse, 24-328/02/2005.
- Zbigniew Błocki and Sławomir Kołodziej, On regularization of plurisubharmonic functions on manifolds, Proc. Amer. Math. Soc. 135 (2007), no. 7, 2089–2093. MR 2299485, DOI https://doi.org/10.1090/S0002-9939-07-08858-2
- Charles P. Boyer, Krzysztof Galicki, and János Kollár, Einstein metrics on spheres, Ann. of Math. (2) 162 (2005), no. 1, 557–580. MR 2178969, DOI https://doi.org/10.4007/annals.2005.162.557
- Eugenio Calabi, On Kähler manifolds with vanishing canonical class, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N. J., 1957, pp. 78–89. MR 0085583 [CN]CN P. Cascini & G. La Nave: Kähler-Ricci Flow and the Minimal Model Program for Projective Varieties. Preprint arXiv math. AG/0603064.
- Urban Cegrell, Pluricomplex energy, Acta Math. 180 (1998), no. 2, 187–217. MR 1638768, DOI https://doi.org/10.1007/BF02392899
- Alessio Corti (ed.), Flips for 3-folds and 4-folds, Oxford Lecture Series in Mathematics and its Applications, vol. 35, Oxford University Press, Oxford, 2007. MR 2352762
- Olivier Debarre, Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York, 2001. MR 1841091
- Jean-Pierre Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, Complex analysis and geometry, Univ. Ser. Math., Plenum, New York, 1993, pp. 115–193. MR 1211880
- Jean-Pierre Demailly, A numerical criterion for very ample line bundles, J. Differential Geom. 37 (1993), no. 2, 323–374. MR 1205448
- Jean-Pierre Demailly, Cohomology of $q$-convex spaces in top degrees, Math. Z. 204 (1990), no. 2, 283–295. MR 1055992, DOI https://doi.org/10.1007/BF02570874
- Jean-Pierre Demailly and Mihai Paun, Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. (2) 159 (2004), no. 3, 1247–1274. MR 2113021, DOI https://doi.org/10.4007/annals.2004.159.1247
- John Erik Fornæss and Raghavan Narasimhan, The Levi problem on complex spaces with singularities, Math. Ann. 248 (1980), no. 1, 47–72. MR 569410, DOI https://doi.org/10.1007/BF01349254
- Hans Grauert and Reinhold Remmert, Coherent analytic sheaves, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 265, Springer-Verlag, Berlin, 1984. MR 755331
- Vincent Guedj, Approximation of currents on complex manifolds, Math. Ann. 313 (1999), no. 3, 437–474. MR 1678537, DOI https://doi.org/10.1007/s002080050269
- Vincent Guedj and Ahmed Zeriahi, Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15 (2005), no. 4, 607–639. MR 2203165, DOI https://doi.org/10.1007/BF02922247
- Vincent Guedj and Ahmed Zeriahi, The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007), no. 2, 442–482. MR 2352488, DOI https://doi.org/10.1016/j.jfa.2007.04.018
- Christopher D. Hacon and James McKernan, Extension theorems and the existence of flips, Flips for 3-folds and 4-folds, Oxford Lecture Ser. Math. Appl., vol. 35, Oxford Univ. Press, Oxford, 2007, pp. 76–110. MR 2359343, DOI https://doi.org/10.1093/acprof%3Aoso/9780198570615.003.0005
- Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
- Robin Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), no. 2, 121–176. MR 597077, DOI https://doi.org/10.1007/BF01467074
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; ibid. (2) 79 (1964), 205–326. MR 0199184, DOI https://doi.org/10.2307/1970547
- Lars Hörmander, Notions of convexity, Progress in Mathematics, vol. 127, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1301332
- Alan Huckleberry, Subvarieties of homogeneous and almost homogeneous manifolds, Contributions to complex analysis and analytic geometry, Aspects Math., E26, Friedr. Vieweg, Braunschweig, 1994, pp. 189–232. MR 1319349
- Yujiro Kawamata, On the finiteness of generators of a pluricanonical ring for a $3$-fold of general type, Amer. J. Math. 106 (1984), no. 6, 1503–1512. MR 765589, DOI https://doi.org/10.2307/2374403
- Ryoichi Kobayashi, Einstein-Kähler $V$-metrics on open Satake $V$-surfaces with isolated quotient singularities, Math. Ann. 272 (1985), no. 3, 385–398. MR 799669, DOI https://doi.org/10.1007/BF01455566
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959
- Sławomir Kołodziej, The complex Monge-Ampère equation, Acta Math. 180 (1998), no. 1, 69–117. MR 1618325, DOI https://doi.org/10.1007/BF02392879
- Sławomir Kołodziej, The Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 52 (2003), no. 3, 667–686. MR 1986892, DOI https://doi.org/10.1512/iumj.2003.52.2220
- Sławomir Kołodziej, The complex Monge-Ampère equation and pluripotential theory, Mem. Amer. Math. Soc. 178 (2005), no. 840, x+64. MR 2172891, DOI https://doi.org/10.1090/memo/0840
- Kenji Matsuki and Martin Olsson, Kawamata-Viehweg vanishing as Kodaira vanishing for stacks, Math. Res. Lett. 12 (2005), no. 2-3, 207–217. MR 2150877, DOI https://doi.org/10.4310/MRL.2005.v12.n2.a6
- Shigefumi Mori, Flip theorem and the existence of minimal models for $3$-folds, J. Amer. Math. Soc. 1 (1988), no. 1, 117–253. MR 924704, DOI https://doi.org/10.1090/S0894-0347-1988-0924704-X
- Michael Nakamaye, Stable base loci of linear series, Math. Ann. 318 (2000), no. 4, 837–847. MR 1802513, DOI https://doi.org/10.1007/s002080000149
- Mihai Paun, Sur l’effectivité numérique des images inverses de fibrés en droites, Math. Ann. 310 (1998), no. 3, 411–421 (French). MR 1612321, DOI https://doi.org/10.1007/s002080050154
- Miles Reid, Canonical $3$-folds, Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980, pp. 273–310. MR 605348
- Miles Reid, Young person’s guide to canonical singularities, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 345–414. MR 927963
- Rolf Richberg, Stetige streng pseudokonvexe Funktionen, Math. Ann. 175 (1968), 257–286 (German). MR 222334, DOI https://doi.org/10.1007/BF02063212
- V. V. Shokurov, Prelimiting flips, Tr. Mat. Inst. Steklova 240 (2003), no. Biratsion. Geom. Lineĭn. Sist. Konechno Porozhdennye Algebry, 82–219; English transl., Proc. Steklov Inst. Math. 1(240) (2003), 75–213. MR 1993750
- Nessim Sibony, Dynamique des applications rationnelles de $\mathbf P^k$, Dynamique et géométrie complexes (Lyon, 1997) Panor. Synthèses, vol. 8, Soc. Math. France, Paris, 1999, pp. ix–x, xi–xii, 97–185 (French, with English and French summaries). MR 1760844
- Yum Tong Siu, A vanishing theorem for semipositive line bundles over non-Kähler manifolds, J. Differential Geom. 19 (1984), no. 2, 431–452. MR 755233
- Yum-Tong Siu, Multiplier ideal sheaves in complex and algebraic geometry, Sci. China Ser. A 48 (2005), no. suppl., 1–31. MR 2156488, DOI https://doi.org/10.1007/bf02884693
- Jian Song and Gang Tian, The Kähler-Ricci flow on surfaces of positive Kodaira dimension, Invent. Math. 170 (2007), no. 3, 609–653. MR 2357504, DOI https://doi.org/10.1007/s00222-007-0076-8
- Kenichi Sugiyama, Einstein-Kähler metrics on minimal varieties of general type and an inequality between Chern numbers, Recent topics in differential and analytic geometry, Adv. Stud. Pure Math., vol. 18, Academic Press, Boston, MA, 1990, pp. 417–433. MR 1145268
- Gang Tian, Canonical metrics in Kähler geometry, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2000. Notes taken by Meike Akveld. MR 1787650
- Gang Tian and Zhou Zhang, On the Kähler-Ricci flow on projective manifolds of general type, Chinese Ann. Math. Ser. B 27 (2006), no. 2, 179–192. MR 2243679, DOI https://doi.org/10.1007/s11401-005-0533-x
- Hajime Tsuji, Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type, Math. Ann. 281 (1988), no. 1, 123–133. MR 944606, DOI https://doi.org/10.1007/BF01449219
- Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. MR 480350, DOI https://doi.org/10.1002/cpa.3160310304
- Ahmed Zeriahi, Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions, Indiana Univ. Math. J. 50 (2001), no. 1, 671–703. MR 1857051, DOI https://doi.org/10.1512/iumj.2001.50.2062
- Zhou Zhang, On degenerate Monge-Ampère equations over closed Kähler manifolds, Int. Math. Res. Not. , posted on (2006), Art. ID 63640, 18. MR 2233716, DOI https://doi.org/10.1155/IMRN/2006/63640
Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 32W20, 32Q20, 32J27, 14J17
Retrieve articles in all journals with MSC (2000): 32W20, 32Q20, 32J27, 14J17
Additional Information
Philippe Eyssidieux
Affiliation:
Institut Fourier - UMR5582, 100 rue des Maths, BP 74, 38402 St Martin d’Heres, France
MR Author ID:
602577
Email:
eyssi@fourier.ujf-grenoble.fr
Vincent Guedj
Affiliation:
LATP, UMR 6632, CMI, Université de Provence, 39 Rue Joliot-Curie, 13453 Marseille cedex 13, France
Email:
guedj@cmi.univ-mrs.fr
Ahmed Zeriahi
Affiliation:
Laboratoire Emile Picard, UMR 5580, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 04, France
Email:
zeriahi@math.ups-tlse.fr
Received by editor(s):
March 17, 2006
Published electronically:
February 6, 2009
Article copyright:
© Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.