## Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential

HTML articles powered by AMS MathViewer

- by László Erdős, Benjamin Schlein and Horng-Tzer Yau;
- J. Amer. Math. Soc.
**22**(2009), 1099-1156 - DOI: https://doi.org/10.1090/S0894-0347-09-00635-3
- Published electronically: May 6, 2009
- PDF | Request permission

## Abstract:

Consider a system of $N$ bosons in three dimensions interacting via a repulsive short range pair potential $N^2V(N(x_i-x_j))$, where $\mathbf {x}=(x_1, \ldots , x_N)$ denotes the positions of the particles. Let $H_N$ denote the Hamiltonian of the system and let $\psi _{N,t}$ be the solution to the Schrödinger equation. Suppose that the initial data $\psi _{N,0}$ satisfies the energy condition \[ \langle \psi _{N,0}, H_N \psi _{N,0} \rangle \leq C N \] and that the one-particle density matrix converges to a projection as $N \to \infty$. Then, we prove that the $k$-particle density matrices of $\psi _{N,t}$ factorize in the limit $N \to \infty$. Moreover, the one particle orbital wave function solves the time-dependent Gross-Pitaevskii equation, a cubic nonlinear Schrödinger equation with the coupling constant proportional to the scattering length of the potential $V$. In a recent paper, we proved the same statement under the condition that the interaction potential $V$ is sufficiently small. In the present work we develop a new approach that requires no restriction on the size of the potential.## References

- Riccardo Adami, Claude Bardos, François Golse, and Alessandro Teta,
*Towards a rigorous derivation of the cubic NLSE in dimension one*, Asymptot. Anal.**40**(2004), no. 2, 93–108. MR**2104130** - Riccardo Adami, François Golse, and Alessandro Teta,
*Rigorous derivation of the cubic NLS in dimension one*, J. Stat. Phys.**127**(2007), no. 6, 1193–1220. MR**2331036**, DOI 10.1007/s10955-006-9271-z
CW Anderson, M.H.; Ensher, J.R.; Matthews, M.R.; Wieman, C.E.; Cornell, E.A.: Observation of Bose-Einstein condensation in a dilute atomic vapor. - Claude Bardos, François Golse, and Norbert J. Mauser,
*Weak coupling limit of the $N$-particle Schrödinger equation*, Methods Appl. Anal.**7**(2000), no. 2, 275–293. Cathleen Morawetz: a great mathematician. MR**1869286**, DOI 10.4310/MAA.2000.v7.n2.a2 - J. Bourgain,
*Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case*, J. Amer. Math. Soc.**12**(1999), no. 1, 145–171. MR**1626257**, DOI 10.1090/S0894-0347-99-00283-0 - J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao,
*Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\Bbb R^3$*, Ann. of Math. (2)**167**(2008), no. 3, 767–865. MR**2415387**, DOI 10.4007/annals.2008.167.767
Kett Davis, K.B.; Mewes, M.-O.; Andrews, M.R.; van Druten, N.J.; Durfee, D.S.; Kurn, D.M.; Ketterle, W.: Bose-Einstein condensation in a gas of sodium atoms. - Alexander Elgart, László Erdős, Benjamin Schlein, and Horng-Tzer Yau,
*Gross-Pitaevskii equation as the mean field limit of weakly coupled bosons*, Arch. Ration. Mech. Anal.**179**(2006), no. 2, 265–283. MR**2209131**, DOI 10.1007/s00205-005-0388-z - Alexander Elgart and Benjamin Schlein,
*Mean field dynamics of boson stars*, Comm. Pure Appl. Math.**60**(2007), no. 4, 500–545. MR**2290709**, DOI 10.1002/cpa.20134 - László Erdős, Benjamin Schlein, and Horng-Tzer Yau,
*Derivation of the Gross-Pitaevskii hierarchy for the dynamics of Bose-Einstein condensate*, Comm. Pure Appl. Math.**59**(2006), no. 12, 1659–1741. MR**2257859**, DOI 10.1002/cpa.20123 - László Erdős, Benjamin Schlein, and Horng-Tzer Yau,
*Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems*, Invent. Math.**167**(2007), no. 3, 515–614. MR**2276262**, DOI 10.1007/s00222-006-0022-1
ESY Erdős, L.; Schlein, B.; Yau, H.-T.: Derivation of the Gross-Pitaevskii Equation for the Dynamics of Bose-Einstein Condensate. Preprint arXiv:math-ph/0606017. To appear in - László Erdős and Horng-Tzer Yau,
*Derivation of the nonlinear Schrödinger equation from a many body Coulomb system*, Adv. Theor. Math. Phys.**5**(2001), no. 6, 1169–1205. MR**1926667**, DOI 10.4310/ATMP.2001.v5.n6.a6 - J. Ginibre and G. Velo,
*The classical field limit of scattering theory for nonrelativistic many-boson systems. I*, Comm. Math. Phys.**66**(1979), no. 1, 37–76. MR**530915**, DOI 10.1007/BF01197745 - Jean Ginibre and Giorgio Velo,
*On a class of nonlinear Schrödinger equations with nonlocal interaction*, Math. Z.**170**(1980), no. 2, 109–136. MR**562582**, DOI 10.1007/BF01214768 - J. Ginibre and G. Velo,
*Scattering theory in the energy space for a class of nonlinear Schrödinger equations*, J. Math. Pures Appl. (9)**64**(1985), no. 4, 363–401. MR**839728** - Klaus Hepp,
*The classical limit for quantum mechanical correlation functions*, Comm. Math. Phys.**35**(1974), 265–277. MR**332046**, DOI 10.1007/BF01646348
LS Lieb, E.H.; Seiringer, R.: Proof of Bose-Einstein condensation for dilute trapped gases. - Elliott H. Lieb, Robert Seiringer, Jan Philip Solovej, and Jakob Yngvason,
*The mathematics of the Bose gas and its condensation*, Oberwolfach Seminars, vol. 34, Birkhäuser Verlag, Basel, 2005. MR**2143817**
LSY Lieb, E.H.; Seiringer, R.; Yngvason, J.: Bosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functional. - Tosio Kato,
*On nonlinear Schrödinger equations*, Ann. Inst. H. Poincaré Phys. Théor.**46**(1987), no. 1, 113–129 (English, with French summary). MR**877998** - Sergiu Klainerman and Matei Machedon,
*On the uniqueness of solutions to the Gross-Pitaevskii hierarchy*, Comm. Math. Phys.**279**(2008), no. 1, 169–185. MR**2377632**, DOI 10.1007/s00220-008-0426-4
M Michelangeli, A.: Equivalent definitions of asymptotic 100% BEC. - Michael Reed and Barry Simon,
*Methods of modern mathematical physics. III*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. Scattering theory. MR**529429**
RS Rodnianski, I.; Schlein, B.: Quantum fluctuations and rate of convergence towards mean field dynamics. Preprint arXiv:math-ph/0711.3087. To appear in - Walter Rudin,
*Functional analysis*, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR**365062** - Herbert Spohn,
*Kinetic equations from Hamiltonian dynamics: Markovian limits*, Rev. Modern Phys.**52**(1980), no. 3, 569–615. MR**578142**, DOI 10.1103/RevModPhys.52.569 - Walter A. Strauss,
*Nonlinear scattering theory at low energy*, J. Functional Analysis**41**(1981), no. 1, 110–133. MR**614228**, DOI 10.1016/0022-1236(81)90063-X - Kenji Yajima,
*The $W^{k,p}$-continuity of wave operators for Schrödinger operators*, J. Math. Soc. Japan**47**(1995), no. 3, 551–581. MR**1331331**, DOI 10.2969/jmsj/04730551 - Kenji Yajima,
*The $W^{k,p}$-continuity of wave operators for Schrödinger operators*, Proc. Japan Acad. Ser. A Math. Sci.**69**(1993), no. 4, 94–98. MR**1222831**

*Science*(

**269**), 198 (1995).

*Phys. Rev. Lett.*(

**75**), 3969 (1995).

*Ann. of Math.*

*Phys. Rev. Lett.*

**88**(2002), 170409-1-4.

*Phys. Rev A*

**61**(2000), 043602.

*Il Nuovo Cimento B*

**123**(2008), no. 2, 181–192.

*Comm. Math. Phys.*

## Bibliographic Information

**László Erdős**- Affiliation: Institute of Mathematics, University of Munich, Theresienstrasse 39, D-80333 Munich, Germany
- MR Author ID: 343945
**Benjamin Schlein**- Affiliation: DPMMS, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WB, United Kingdom
**Horng-Tzer Yau**- Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
- MR Author ID: 237212
- Received by editor(s): April 15, 2008
- Published electronically: May 6, 2009
- Additional Notes: The first author was partially supported by SFB/TR12 Project from DFG

The second author was supported by a Kovalevskaja Award from the Humboldt Foundation

The third author was partially supported by NSF grants DMS-0602038, 0757425, and 0804279 - © Copyright 2009 American Mathematical Society
- Journal: J. Amer. Math. Soc.
**22**(2009), 1099-1156 - MSC (2000): Primary 82C10, 35Q55
- DOI: https://doi.org/10.1090/S0894-0347-09-00635-3
- MathSciNet review: 2525781