Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential
HTML articles powered by AMS MathViewer
- by László Erdős, Benjamin Schlein and Horng-Tzer Yau;
- J. Amer. Math. Soc. 22 (2009), 1099-1156
- DOI: https://doi.org/10.1090/S0894-0347-09-00635-3
- Published electronically: May 6, 2009
- PDF | Request permission
Abstract:
Consider a system of $N$ bosons in three dimensions interacting via a repulsive short range pair potential $N^2V(N(x_i-x_j))$, where $\mathbf {x}=(x_1, \ldots , x_N)$ denotes the positions of the particles. Let $H_N$ denote the Hamiltonian of the system and let $\psi _{N,t}$ be the solution to the Schrödinger equation. Suppose that the initial data $\psi _{N,0}$ satisfies the energy condition \[ \langle \psi _{N,0}, H_N \psi _{N,0} \rangle \leq C N \] and that the one-particle density matrix converges to a projection as $N \to \infty$. Then, we prove that the $k$-particle density matrices of $\psi _{N,t}$ factorize in the limit $N \to \infty$. Moreover, the one particle orbital wave function solves the time-dependent Gross-Pitaevskii equation, a cubic nonlinear Schrödinger equation with the coupling constant proportional to the scattering length of the potential $V$. In a recent paper, we proved the same statement under the condition that the interaction potential $V$ is sufficiently small. In the present work we develop a new approach that requires no restriction on the size of the potential.References
- Riccardo Adami, Claude Bardos, François Golse, and Alessandro Teta, Towards a rigorous derivation of the cubic NLSE in dimension one, Asymptot. Anal. 40 (2004), no. 2, 93–108. MR 2104130
- Riccardo Adami, François Golse, and Alessandro Teta, Rigorous derivation of the cubic NLS in dimension one, J. Stat. Phys. 127 (2007), no. 6, 1193–1220. MR 2331036, DOI 10.1007/s10955-006-9271-z CW Anderson, M.H.; Ensher, J.R.; Matthews, M.R.; Wieman, C.E.; Cornell, E.A.: Observation of Bose-Einstein condensation in a dilute atomic vapor. Science (269), 198 (1995).
- Claude Bardos, François Golse, and Norbert J. Mauser, Weak coupling limit of the $N$-particle Schrödinger equation, Methods Appl. Anal. 7 (2000), no. 2, 275–293. Cathleen Morawetz: a great mathematician. MR 1869286, DOI 10.4310/MAA.2000.v7.n2.a2
- J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc. 12 (1999), no. 1, 145–171. MR 1626257, DOI 10.1090/S0894-0347-99-00283-0
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\Bbb R^3$, Ann. of Math. (2) 167 (2008), no. 3, 767–865. MR 2415387, DOI 10.4007/annals.2008.167.767 Kett Davis, K.B.; Mewes, M.-O.; Andrews, M.R.; van Druten, N.J.; Durfee, D.S.; Kurn, D.M.; Ketterle, W.: Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. (75), 3969 (1995).
- Alexander Elgart, László Erdős, Benjamin Schlein, and Horng-Tzer Yau, Gross-Pitaevskii equation as the mean field limit of weakly coupled bosons, Arch. Ration. Mech. Anal. 179 (2006), no. 2, 265–283. MR 2209131, DOI 10.1007/s00205-005-0388-z
- Alexander Elgart and Benjamin Schlein, Mean field dynamics of boson stars, Comm. Pure Appl. Math. 60 (2007), no. 4, 500–545. MR 2290709, DOI 10.1002/cpa.20134
- László Erdős, Benjamin Schlein, and Horng-Tzer Yau, Derivation of the Gross-Pitaevskii hierarchy for the dynamics of Bose-Einstein condensate, Comm. Pure Appl. Math. 59 (2006), no. 12, 1659–1741. MR 2257859, DOI 10.1002/cpa.20123
- László Erdős, Benjamin Schlein, and Horng-Tzer Yau, Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems, Invent. Math. 167 (2007), no. 3, 515–614. MR 2276262, DOI 10.1007/s00222-006-0022-1 ESY Erdős, L.; Schlein, B.; Yau, H.-T.: Derivation of the Gross-Pitaevskii Equation for the Dynamics of Bose-Einstein Condensate. Preprint arXiv:math-ph/0606017. To appear in Ann. of Math.
- László Erdős and Horng-Tzer Yau, Derivation of the nonlinear Schrödinger equation from a many body Coulomb system, Adv. Theor. Math. Phys. 5 (2001), no. 6, 1169–1205. MR 1926667, DOI 10.4310/ATMP.2001.v5.n6.a6
- J. Ginibre and G. Velo, The classical field limit of scattering theory for nonrelativistic many-boson systems. I, Comm. Math. Phys. 66 (1979), no. 1, 37–76. MR 530915, DOI 10.1007/BF01197745
- Jean Ginibre and Giorgio Velo, On a class of nonlinear Schrödinger equations with nonlocal interaction, Math. Z. 170 (1980), no. 2, 109–136. MR 562582, DOI 10.1007/BF01214768
- J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl. (9) 64 (1985), no. 4, 363–401. MR 839728
- Klaus Hepp, The classical limit for quantum mechanical correlation functions, Comm. Math. Phys. 35 (1974), 265–277. MR 332046, DOI 10.1007/BF01646348 LS Lieb, E.H.; Seiringer, R.: Proof of Bose-Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88 (2002), 170409-1-4.
- Elliott H. Lieb, Robert Seiringer, Jan Philip Solovej, and Jakob Yngvason, The mathematics of the Bose gas and its condensation, Oberwolfach Seminars, vol. 34, Birkhäuser Verlag, Basel, 2005. MR 2143817 LSY Lieb, E.H.; Seiringer, R.; Yngvason, J.: Bosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functional. Phys. Rev A 61 (2000), 043602.
- Tosio Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor. 46 (1987), no. 1, 113–129 (English, with French summary). MR 877998
- Sergiu Klainerman and Matei Machedon, On the uniqueness of solutions to the Gross-Pitaevskii hierarchy, Comm. Math. Phys. 279 (2008), no. 1, 169–185. MR 2377632, DOI 10.1007/s00220-008-0426-4 M Michelangeli, A.: Equivalent definitions of asymptotic 100% BEC. Il Nuovo Cimento B 123 (2008), no. 2, 181–192.
- Michael Reed and Barry Simon, Methods of modern mathematical physics. III, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. Scattering theory. MR 529429 RS Rodnianski, I.; Schlein, B.: Quantum fluctuations and rate of convergence towards mean field dynamics. Preprint arXiv:math-ph/0711.3087. To appear in Comm. Math. Phys.
- Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 365062
- Herbert Spohn, Kinetic equations from Hamiltonian dynamics: Markovian limits, Rev. Modern Phys. 52 (1980), no. 3, 569–615. MR 578142, DOI 10.1103/RevModPhys.52.569
- Walter A. Strauss, Nonlinear scattering theory at low energy, J. Functional Analysis 41 (1981), no. 1, 110–133. MR 614228, DOI 10.1016/0022-1236(81)90063-X
- Kenji Yajima, The $W^{k,p}$-continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan 47 (1995), no. 3, 551–581. MR 1331331, DOI 10.2969/jmsj/04730551
- Kenji Yajima, The $W^{k,p}$-continuity of wave operators for Schrödinger operators, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), no. 4, 94–98. MR 1222831
Bibliographic Information
- László Erdős
- Affiliation: Institute of Mathematics, University of Munich, Theresienstrasse 39, D-80333 Munich, Germany
- MR Author ID: 343945
- Benjamin Schlein
- Affiliation: DPMMS, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WB, United Kingdom
- Horng-Tzer Yau
- Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
- MR Author ID: 237212
- Received by editor(s): April 15, 2008
- Published electronically: May 6, 2009
- Additional Notes: The first author was partially supported by SFB/TR12 Project from DFG
The second author was supported by a Kovalevskaja Award from the Humboldt Foundation
The third author was partially supported by NSF grants DMS-0602038, 0757425, and 0804279 - © Copyright 2009 American Mathematical Society
- Journal: J. Amer. Math. Soc. 22 (2009), 1099-1156
- MSC (2000): Primary 82C10, 35Q55
- DOI: https://doi.org/10.1090/S0894-0347-09-00635-3
- MathSciNet review: 2525781