On $P$-orderings, rings of integer-valued polynomials, and ultrametric analysis
HTML articles powered by AMS MathViewer
- by Manjul Bhargava PDF
- J. Amer. Math. Soc. 22 (2009), 963-993 Request permission
Abstract:
We introduce two new notions of â$P$-orderingâ and use them to define a three-parameter generalization of the usual factorial function. We then apply these notions of $P$-orderings and factorials to some classical problems in two distinct areas, namely: 1) the study of integer-valued polynomials and 2) $P$-adic analysis.
Specifically, we first use these notions of $P$-orderings and factorials to construct explicit PĂłlya-style regular bases for two natural families of rings of integer-valued polynomials defined on an arbitrary subset of a Dedekind domain.
Second, we classify âsmoothâ functions on an arbitrary compact subset $S$ of a local field, by constructing explicit interpolation series (i.e., orthonormal bases) for the Banach space of functions on $S$ satisfying any desired conditions of continuous differentiability or local analyticity. Our constructions thus extend Mahlerâs Theorem (classifying the functions that are continuous on $\mathbb {Z}_p$) to a very general setting. In particular, our constructions prove that, for any $\epsilon >0$, the functions in any of the above Banach spaces can be $\epsilon$-approximated by polynomials (with respect to their respective Banach norms). Thus we obtain the non-Archimedean analogues of the classical polynomial approximation theorems in real and complex analysis proven by Weierstrass, de la VallĂ©e-Poussin, and Bernstein. Our proofs are effective.
References
- Yvette Amice, Interpolation $p$-adique, Bull. Soc. Math. France 92 (1964), 117â180 (French). MR 188199, DOI 10.24033/bsmf.1606
- Daniel Barsky, Fonctions $k$-lipschitziennes sur un anneau local et polynĂŽmes Ă valeurs entiĂšres, Bull. Soc. Math. France 101 (1973), 397â411 (French). MR 371863, DOI 10.24033/bsmf.1766 Bernstein S. Bernstein, Leçons sur les propriĂ©tĂ©s extrĂ©males de la meilleure approximation des fonctions analytiques dâune variable rĂ©elle, Paris, 1926.
- Manjul Bhargava, $P$-orderings and polynomial functions on arbitrary subsets of Dedekind rings, J. Reine Angew. Math. 490 (1997), 101â127. MR 1468927, DOI 10.1515/crll.1997.490.101
- Manjul Bhargava, The factorial function and generalizations, Amer. Math. Monthly 107 (2000), no. 9, 783â799. MR 1792411, DOI 10.2307/2695734 BCY M. Bhargava, P.-J. Cahen, and J. Yeramian, Finite generation properties for rings of integer-valued polynomials, J. Algebra, to appear.
- Manjul Bhargava and Kiran S. Kedlaya, Continuous functions on compact subsets of local fields, Acta Arith. 91 (1999), no. 3, 191â198. MR 1735672, DOI 10.4064/aa-91-3-191-198
- Paul-Jean Cahen, Polynomes Ă valeurs entiĂšres, Canadian J. Math. 24 (1972), 747â754 (French). MR 309923, DOI 10.4153/CJM-1972-071-2
- Paul-Jean Cahen and Jean-Luc Chabert, Integer-valued polynomials, Mathematical Surveys and Monographs, vol. 48, American Mathematical Society, Providence, RI, 1997. MR 1421321, DOI 10.1090/surv/048
- Paul-Jean Cahen, Jean-Luc Chabert, and K. Alan Loper, High dimension PrĂŒfer domains of integer-valued polynomials, J. Korean Math. Soc. 38 (2001), no. 5, 915â935. Mathematics in the new millennium (Seoul, 2000). MR 1849332
- Paul-Jean Cahen and Jean-Luc Chabert, On the ultrametric Stone-Weierstrass theorem and Mahlerâs expansion, J. ThĂ©or. Nombres Bordeaux 14 (2002), no. 1, 43â57 (English, with English and French summaries). MR 1925989, DOI 10.5802/jtnb.345
- L. Carlitz, A note on integral-valued polynomials, Nederl. Akad. Wetensch. Proc. Ser. A 62 = Indag. Math. 21 (1959), 294â299. MR 0108462, DOI 10.1016/S1385-7258(59)50033-5
- N. G. de Bruijn, Some classes of integer-valued functions, Nederl. Akad. Wetensch. Proc. Ser. A. 58=Indag. Math. 17 (1955), 363â367. MR 0071450, DOI 10.1016/S1385-7258(55)50051-5
- Jean DieudonnĂ©, Sur les fonctions continues $p$-adiques, Bull. Sci. Math. (2) 68 (1944), 79â95 (French). MR 13142
- Jean Fresnel and Marius van der Put, Rigid analytic geometry and its applications, Progress in Mathematics, vol. 218, BirkhÀuser Boston, Inc., Boston, MA, 2004. MR 2014891, DOI 10.1007/978-1-4612-0041-3
- Gilbert Gerboud, PolynĂŽmes Ă valeurs entiĂšres sur lâanneau des entiers de Gauss, C. R. Acad. Sci. Paris SĂ©r. I Math. 307 (1988), no. 8, 375â378 (French, with English summary). MR 965801
- H. Gunji and D. L. McQuillan, Polynomials with integral values, Proc. Roy. Irish Acad. Sect. A 78 (1978), no. 1, 1â7. MR 472801
- Irving Kaplansky, The Weierstrass theorem in fields with valuations, Proc. Amer. Math. Soc. 1 (1950), 356â357. MR 35760, DOI 10.1090/S0002-9939-1950-0035760-3
- José G. Llavona, Approximation of continuously differentiable functions, North-Holland Mathematics Studies, vol. 130, North-Holland Publishing Co., Amsterdam, 1986. Notas de Matemåtica [Mathematical Notes], 112. MR 870155
- K. Mahler, An interpolation series for continuous functions of a $p$-adic variable, J. Reine Angew. Math. 199 (1958), 23â34. MR 95821, DOI 10.1515/crll.1958.199.23
- WĆadysĆaw Narkiewicz, Polynomial mappings, Lecture Notes in Mathematics, vol. 1600, Springer-Verlag, Berlin, 1995. MR 1367962, DOI 10.1007/BFb0076894 Ostrowski A. Ostrowski, Ăber ganzwertige Polynome in algebraischen Zahlkörpern, J. reine angew. Math. 149 (1919) 117-124. Polya G. PĂłlya, Ăber ganzwertige ganze Funktionen, Rend. Circ. Mat. Palermo 40 (1915) 1-16. Polya2 G. PĂłlya, Ăber ganzwertige Polynome in algebraischen Zahlkörpern, J. reine angew. Math. 149 (1919) 97-116.
- W. H. Schikhof, Ultrametric calculus, Cambridge Studies in Advanced Mathematics, vol. 4, Cambridge University Press, Cambridge, 1984. An introduction to $p$-adic analysis. MR 791759 Valle C. de la VallĂ©e-Poussin, Sur lâapproximation des fonctions dâune variable rĂ©elle et de leurs dĂ©rivĂ©es par des polynĂŽmes et des suites finies de Fourier, Bull. Acad. Sci. Belgique (1908), 193â254.
- Ann Verdoodt, Orthonormal bases for non-Archimedean Banach spaces of continuous functions, $p$-adic functional analysis (PoznaĆ, 1998) Lecture Notes in Pure and Appl. Math., vol. 207, Dekker, New York, 1999, pp. 323â331. MR 1703503
- Carl G. Wagner, Interpolation series for continuous functions on $\pi$-adic completions of $\textrm {GF}(q,\,x).$, Acta Arith. 17 (1970/71), 389â406. MR 282973, DOI 10.4064/aa-17-4-389-406
- Carl G. Wagner, Polynomials over $\textrm {GF}(q,x)$ with integral-valued differences, Arch. Math. (Basel) 27 (1976), no. 5, 495â501. MR 417137, DOI 10.1007/BF01224707 Weierstrauss K. Weierstrass, Ăber die analytische Darstellbarkeit sogenannter willkĂŒrlicher Functionen einer reellen VerĂ€nderlichen, Sitzungsberichte der Königlich Preu$\beta$ischen Akademie der Wissenschaften zu Berlin, 1885 (II).
- Zifeng Yang, Locally analytic functions over completions of $\textbf {F}_r[U]$, J. Number Theory 73 (1998), no. 2, 451â458. MR 1657996, DOI 10.1006/jnth.1998.2308 Yeramian J. Yeramian, Anneaux de Bhargava, Ph.D. Thesis, UniversitĂ© Aix-Marseille, 2004.
Additional Information
- Manjul Bhargava
- Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544
- MR Author ID: 623882
- Email: bhargava@math.princeton.edu
- Received by editor(s): February 25, 2008
- Published electronically: May 27, 2009
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 22 (2009), 963-993
- MSC (2000): Primary 11C08, 11S80; Secondary 13F20, 13B25
- DOI: https://doi.org/10.1090/S0894-0347-09-00638-9
- MathSciNet review: 2525777