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1. Introduction and main results

1.1. Setting of the problem. This paper is concerned with nonlinear spreading
and propagation phenomena for reaction-diffusion equations in general unbounded
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2 HENRI BERESTYCKI, FRANÇOIS HAMEL, AND NIKOLAI NADIRASHVILI

domains. We consider reaction terms of the Fisher or KPP (for Kolmogorov, Petro-
vsky, Piskunov) type. Propagation phenomena in a homogeneous framework are
well understood, and we will recall below the main results. This article is the
second in a series of two, and it is the follow-up of the article [7] (part I). Both
papers deal with heterogeneous problems. Part I was concerned with equations
with periodic coefficients in domains having periodic structures. The present paper
(part II) deals with reaction-diffusion equations with constant coefficients, but in
very general domains which are not periodic. We define and analyze various notions
of asymptotic spreading speeds for solutions with compactly supported initial data.
Before introducing the main notions and stating the main results, let us recall some
basic features of the homogeneous framework in R

N and let us also recall some of
the results in the periodic framework.

Consider first the Fisher-KPP equation

(1.1) ut −∆u = f(u) in R
N .

It has been introduced in the celebrated papers of Fisher (1937, [12]) and KPP
(1937, [29]) originally motivated by models in biology (in these models, u stands
for the concentration of a species). The main assumption is that f is say a C1(R+)
function satisfying
(1.2){

f(0) = f(1) = 0, f ′(1) < 0, f ′(0) > 0, f > 0 in (0, 1), f < 0 in (1,+∞),
f(s) ≤ f ′(0)s for all s ∈ [0, 1].

Archetypes of such nonlinearities are f(s) = s(1− s) or f(s) = s(1− s2).
Two fundamental features of this equation account for its success in representing

propagation (or invasion) and spreading. First, this equation has a family of planar
travelling fronts. These are solutions of the form u(t, x) = U(x · e− ct), where e is
a fixed vector of unit norm which is the direction of propagation and c > 0 is the
speed of the front. Here U : R �→ R is given by

−U ′′ − cU ′ = f(U) in R, U(−∞) = 1, U(+∞) = 0.

In the original paper of Kolmogorov, Petrovsky and Piskunov, it was proved that,
under the above assumptions, there is a threshold value c∗ = 2

√
f ′(0) > 0 for the

speed c. Namely, no fronts exist for c < c∗, and, for each c ≥ c∗, there is a unique
front U of the previous type. Uniqueness is up to shift in space or time variables.

Another fundamental property of this equation was established mathematically
by Aronson and Weinberger (1978, [1]). It deals with the asymptotic speed of
spreading. Namely, if u0 is a nonnegative continuous function in RN with compact
support and u0 �≡ 0, then the solution u(t, x) of (1.1) with initial condition u0 at
time t = 0 spreads with the speed c∗ in all directions for large times: as t → +∞,

max
|x|≤ct

|u(t, x)− 1| → 0 for each c ∈ [0, c∗) and max
|x|≥ct

u(t, x) → 0 for each c > c∗.

In Part I of [7] and in an earlier paper [4], we introduced a general heterogeneous
periodic framework extending (1.1). The types of equations which were considered
there were

(1.3) ut −∇ · (A(x)∇u) + q(x) · ∇u = f(x, u) in Ω, ν ·A∇u = 0 on ∂Ω,

where ν denotes the outward unit normal on ∂Ω. Both the coefficients of the
equation, namely the diffusion matrix A(x), the drift q(x) and the reaction term
f(x, s), as well as the geometry of the underlying connected open set Ω, were
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assumed to be periodic. More precisely, there are d ∈ {1, . . . , N} and d positive
real numbers L1, . . . , Ld such that

(1.4)

{
∀k ∈ L1Z× · · · × LdZ× {0}N−d, Ω+ k = Ω,
∃ C ≥ 0, ∀ x = (xi)1≤i≤N ∈ Ω, |xd+1|+ · · ·+ |xN | ≤ C,

and the functions A, q and f are periodic with periods L1, . . . , Ld in the variables
x1, . . . , xd. Given a unit direction e ∈ Rd × {0}N−d, a pulsating travelling front
in the direction e is a solution u(t, x) of the type u(t, x) = U(x · e − ct, x), where
U = U(s, x) is periodic in the variables x1, . . . , xd (with periods L1, . . . , Ld) and
U(s, x) → 1 as s → −∞, U(s, x) → 0 as s → +∞, uniformly with respect to
x ∈ Ω (assuming that f(x, 0) = f(x, 1) = 0). Under some natural assumptions
on f (generalizing the hypothesis (1.2)) and on A and q, existence and uniqueness
(for each speed) of pulsating fronts for, and only for, speeds c ≥ c∗(e) were proved
in [4, 7, 20, 21]. A variational formula for the minimal speed c∗(e), in terms of
some periodic eigenvalue problems, was also derived in [7]. These results extended
some earlier results in dimension 1 (see e.g. [25, 38]) and in straight infinite cylin-
ders with shear flows [8]. Let us mention here that other types of nonlinearities
(combustion type, bistable type, other nonlinearities arising in population dynam-
ics,...) were also dealt with in the literature (see [4, 11, 19, 24, 35, 39, 41] and the
references therein for some existence, uniqueness and stability results on fronts in
homogeneous or periodic media and formulæ for the speeds of propagation).

Furthermore, the same type of spreading properties holds in the periodic frame-
work as in the homogeneous one. Namely, for problem (1.3) under the assumption
that 0 < f(x, s) ≤ f ′

s(x, 0)s for all s ∈ (0, 1) and x ∈ Ω, Freidlin and Gärtner [14]
and Freidlin [13] in the case of RN , and then Weinberger [40] in the general peri-
odic framework described above, proved the existence of an asymptotic spreading
speed (or ray speed) w∗(e) > 0 such that if u(t, x) solves (1.3) with a nonnegative,
continuous and compactly supported initial condition u0 �≡ 0, then
(1.5)⎧⎨
⎩

max
x∈K, 0≤s≤ct, x+se ∈ Ω

|u(t, x+ se)− 1| → 0 if 0 ≤ c < w∗(e),

max
x∈K, s≥ct, x+se ∈ Ω

u(t, x+ se) → 0 if c > w∗(e),
as t → +∞,

for any large enough compact set K so that the sets in which the maxima are taken
are not empty. Moreover, w∗(e) is given in terms of the minimal speeds of pulsating
fronts by the geometrical formula w∗(e) = minξ∈Rd×{0}N−d, ξ·e>0 c∗(ξ)/(e · ξ). (See
[40]; see also [1, 11, 26, 27] for other results with other types of nonlinearities in the
homogeneous case, and [34, 36] for equations with shear flows in straight infinite
cylinders. Other results, including some with more general time-space scalings,
were also obtained in [33].) The dependence of c∗(e) and w∗(e) on the coefficients
of (1.3) (monotonicity, bounds, asymptotics) is analyzed in Part I of [7] (see also
[2, 3, 6, 9, 22, 23, 28, 37, 42]).

We also studied in [7] the influence of the geometry of the periodic domain Ω
(under assumption (1.4)) on the propagation speeds, for the equation

ut = ∆u+ f(u) in Ω, ν · ∇u = 0 on ∂Ω

under assumption (1.2) for f . More precisely, one of the results was that

w∗(e) ≤ c∗(e) ≤ 2
√
f ′(0)



4 HENRI BERESTYCKI, FRANÇOIS HAMEL, AND NIKOLAI NADIRASHVILI

and w∗(e) = 2
√
f ′(0) if and only if Ω is invariant in the direction e (straight

cylinder in the direction e, with bounded or unbounded section). Notice that this

geometrical condition is also necessary for the equality c∗(e) = 2
√
f ′(0) to hold (see

[7]). In other words, the presence of holes or of an undulating boundary always
hinder the progression or the spreading. Moreover, we proved in [7] that the speeds
c∗(e) are not in general monotone with respect to the size of the perforations. The

inequality w∗(e) ≤ c∗(e) always works. The equality w∗(e) = c∗(e) (= 2
√
f ′(0))

holds in the homogeneous framework (1.1) in RN , but the inequality w∗(e) ≤ c∗(e)
may be strict in general (see Remark 1.12 in [7]).

1.2. Spreading speeds in general domains. Let us now come back to the gen-
eral nonperiodic case and deal with the Cauchy problem for the Fisher-KPP equa-
tion:

(1.6)

⎧⎨
⎩

ut = ∆u+ f(u) in Ω, t > 0,
ν · ∇u = 0 on ∂Ω, t > 0,
u(0, x) = u0(x) in Ω.

Throughout the paper, Ω denotes a domain (open connected subset) of RN , locally
C2, with outward unit normal ν. The initial condition u0 is continuous, nonnega-
tive, u0 �≡ 0 in Ω and u0 is compactly supported in Ω. One calls E the set of such
functions u0. The C1 function f : R+ → R is assumed to satisfy (1.2). This
assumption on f is made from now on throughout the paper. The function u(t, x)
is defined as the nondecreasing limit, as n → +∞, of the functions un(t, x) which
are weak solutions of the equation un

t = ∆un + f(un) in Ω ∩ Bn for t > 0, with
boundary condition ν ·∇un = 0 on ∂Ω∩Bn, u

n = 0 on Ω∩∂Bn and initial condition
un(0, ·) = u0|Ω∩Bn

. Here, Br denotes the open euclidean ball of RN with centre

0 and radius r > 0. Notice that u is a classical solution of (1.6) for all t > 0 and
that 0 < u(t, x) < max(maxΩ u0, 1), for all t > 0 and x ∈ Ω, from the maximum
principle.

Traveling or pulsating fronts do not exist anymore in this general nonperiodic
framework, even if the notion of fronts can be extended to arbitrary geometries (see
[5]). But the purpose of this paper is rather, first, to understand how we can extend
the notions of asymptotic spreading speeds for the solutions of the Cauchy problem
(1.6) with a compactly supported initial condition u0 ∈ E . Different definitions can
be given, which are coherent with the periodic case. We then analyze the relation-
ships between these general new definitions. Some other fundamental questions will
then be asked: how do the spreading speeds depend on the initial condition? Can
they be compared to the spreading speed 2

√
f ′(0) of the whole space RN? We will

especially see that the answer to this last question is positive for a large class of
domains, but is negative in some domains for which the spreading speed is infinite.
We also analyze in detail the case of exterior domains.

Let us now make more precise the definitions of spreading speeds in unbounded
directions of Ω. In all that follows, one calls B(z, r) the open euclidean ball of
centre z and radius r in RN . In the following, we also take the convention that, for
a function v : E ⊂ Rm → R, sup∅ v = +∞.

Definition 1.1. We say that a connected open set Ω ⊂ R
N is strongly unbounded

in a direction e ∈ SN−1 if there exist R0 ≥ 0 and s0 ∈ R such that B(se,R0)∩Ω �= ∅
for all s ≥ s0. With a slight abuse of notation, we set B(y, 0) = {y} for all y ∈ RN .
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We then define R(e) ≥ 0 as

R(e) = inf { R ≥ 0, ∃ s ∈ R, ∀ s′ ≥ s, B(s′e,R) ∩ Ω �= ∅ }.
As an example, a periodic domain Ω, satisfying (1.4), is strongly unbounded in

any unit direction e ∈ R
d × {0}N−d.

Since problem (1.6) is well-understood when N = 1 (in which case strong un-
boundedness in the direction ±1 means that Ω ⊃ ±[a,+∞) for some a ∈ R, since
Ω is always assumed to be connected), one can assume that N ≥ 2 in the sequel.

Definition 1.2. Let e be a direction in which Ω is strongly unbounded and let
R(e) ≥ 0 be as in Definition 1.1. Let u be the solution of (1.6) with initial condition
u0 ∈ E .

We define the spreading speed of u in the direction e as

w∗(e, u0) = inf

{
c > 0, ∀ A > R(e), lim sup

t→+∞

[
sup

s≥ct, x∈B(se,A)∩Ω

u(t, x)

]
= 0

}
.

We set w∗(e, u0) = +∞ if there is no c > 0 such that sups≥ct, x∈B(se,A)∩Ω u(t, x) →
0 as t → +∞ for all A > R(e).

The nonnegative real number w∗(e, u0), if finite, can be viewed as the asymptotic
speed of the leading edge of the solution u uniformly with respect to all cylinders
along the direction e.

Another related notion, which is more precise in some sense, is that of spreading
speed along a half-line.

Definition 1.3. Under the same assumptions as in Definition 1.2, we define the
spreading speed of u along the half-line z + R+e, for z ∈ R

N , as

w∗(e, z, u0) = inf

{
c > 0, ∃ A > 0, lim sup

t→+∞

[
sup

s≥ct, x∈B(z+se,A)∩Ω

u(t, x)

]
= 0

}
.

We set w∗(e, z, u0) = +∞ if for all c > 0 and A > 0, sups≥ct, x∈B(z+se,A)∩Ω u(t, x)

�→ 0 as t → +∞.

The nonnegative real number w∗(e, z, u0), if finite, is the asymptotic spread-
ing speed of u locally along the line z + R+e. Notice also that w∗(e, z, u0) =
w∗(e, z + σe, u0) for all σ ∈ R.

Remark 1.4. Under the above notations, say

R(e, z) = inf { R ≥ 0, ∃ s ∈ R, ∀ s′ ≥ s, B(z + s′e,R) ∩ Ω �= ∅ }.
Notice that R(e, 0) = R(e) and that R(e)−|z−(z ·e)e| ≤ R(e, z) ≤ R(e)+|z−(z ·e)e|
for all z ∈ RN . If R(e, z) > 0 and if there exists s ∈ R such that B(z + s′e,R(e, z))∩
Ω �= ∅ for all s′ ≥ s,1 then the definition of w∗(e, z, u0) is equivalent to the following
one:

w∗(e, z, u0) = inf

{
c > 0, lim sup

t→+∞

[
sup

s≥ct, x∈B(z+se,R(e,z))∩Ω

u(t, x)

]
= 0

}
.

1Notice that the existence of such a real number s is not guaranteed in general, as the following

example shows: in R2, call xk = (k2, 0) for k ∈ N and set Ω = R2 \
⋃
k∈N

B(xk, 1 + 1/k). For e =

(1, 0) and z = (0, 0) one has R(e) = R(e, z) = 1, but there is no s ∈ R such that B(z + s′e, 1)∩Ω �=
∅ for all s′ ≥ s.
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In the case where R(e, z) = 0 or if there is no s ∈ R such that B(z + s′e,R(e, z))∩
Ω �= ∅ for all s′ ≥ s, then the definition of w∗(e, z, u0) is equivalent to the following
one:

w∗(e, z, u0) = inf

{
c > 0, ∃ A > R(e, z), lim sup

t→+∞

[
sup

s≥ct, x∈B(z+se,A)∩Ω

u(t, x)

]
= 0

}
.

Furthermore, it immediately follows from the above definitions that

∀ γ > w∗(e, u0), ∀ A > R(e), max
x∈B(γte,A)∩Ω

u(t, x) → 0 as t → +∞

and that

∀ γ > w∗(e, z, u0), ∃ A > 0, max
x∈B(z+γte,A)∩Ω

u(t, x) → 0 as t → +∞.

If Ω is a periodic domain satisfying (1.4), then these new notions of asymptotic
spreading speeds are coherent with the previous one, w∗(e), characterized by (1.5);
namely,

w∗(e, z, u0) = w∗(e, u0) = w∗(e)

for all u0 ∈ E , for all z ∈ R
N and for all unit direction e ∈ R

d × {0}N−d.

1.3. Dependence on the point z. In general nonperiodic domains, it is clear
that the inequality

w∗(e, z, u0) ≤ w∗(e, u0)

holds for all z ∈ RN . However, the inequality may be strict, as the following
proposition shows. We can furthermore make more precise the relationship between
w∗(e, u0) and w∗(e, z, u0) when z varies.

Proposition 1.5. Let N ≥ 2 and e ∈ SN−1 be given. For each locally C2 domain Ω
which is strongly unbounded in the direction e and for each initial condition u0 ∈ E ,
one has

(1.7) sup
z∈RN

w∗(e, z, u0) = w∗(e, u0).

Furthermore, given z ∈ RN , there are some locally C2 domains Ω which are strongly
unbounded in the direction e and such that w∗(e, z, u0) < w∗(e, u0) for all u0 ∈ E .

The proof of the second assertion relies on some precise heat kernel estimates as
well as on some lower bounds of w∗(e, u0) for some domains containing a “quarter
of spaces” (see Proposition 1.11 and Corollary 1.12 below). We actually prove more
than what is stated here: namely, up to translation and rotation, we exhibit some
domains Ω for which w∗(e, u0) = 2

√
f ′(0) for all u0 ∈ E and w∗(e, z, u0) = 0 for

all u0 ∈ E and for all z ∈ RN , such that z · e′ > h (here, e′ ∈ SN−1 is any given
direction which is orthogonal to e, and h is any given real number).

In the following result, we give a sufficient condition for the spreading speed
w∗(e, z, u0) not to depend on z. Let us first introduce the notation Hy,z and the
definition of global C2,α smoothness of Ω:

Hypothesis Hy,z. Let Ω be strongly unbounded in a direction e ∈ SN−1. We say
that y and z ∈ RN are asymptotically connected in the direction e within Ω (or
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that Hypothesis Hy,z is satisfied) if there exist Ry > R(e, y) and Rz > R(e, z) such
that

lim sup
s→+∞

sup
y′∈B(y+se,Ry)∩Ω

z′∈B(z+se,Rz)∩Ω

dΩ(y
′, z′) < +∞,

where dΩ denotes the geodesic distance in Ω. This condition is a type of relative
connectedness assumption in the direction e. A typical counter-example is what we
call Luckhaus’s comb.2 Notice that Hypothesis Hy,z is satisfied for any y, z ∈ RN

if Ω is a periodic domain of the type (1.4). Lastly, if Hypothesis Hy,z is satisfied,
then so is Hy+αe,z+βe for any (α, β) ∈ R

2 (see Remark 2.1 for the details).

Global C2,α smoothness of Ω. Call BN−1
s the closed Euclidean ball of RN−1

with center 0 and radius s > 0. In the entire paper, if Ω ⊂ RN is a nonempty
connected open subset of RN and if α is a positive real number, we say that Ω is
globally of class C2,α if there exist r > 0 and M > 0 such that, for all z ∈ ∂Ω, there
is a linear isometric map Tz : RN → RN and there is a C2,α map φz : BN−1

2r → R

such that φz(0) = 0, ‖φz‖C2,α(BN−1
2r ) ≤ M and

Ω ∩B(z, r)=
[
z + Tz

(
{y ∈ R

N , (y1, . . . , yN−1) ∈ BN−1
2r ,

φz(y1, . . . , yN−1) < yN})] ∩B(z, r).

Notice in particular that RN is globally of class C2,α for all α > 0.

Theorem 1.6 (Dependence on z). Let N ≥ 2 and e ∈ S
N−1 be given. Assume

that Ω is strongly unbounded in the direction e, that Ω is globally of class C2,α for
some α > 0, and that Hypothesis Hy,z is satisfied for some y and z in RN . Then

∀ u0 ∈ E , w∗(e, y, u0) = w∗(e, z, u0).

As a consequence, if Ω satisfies Hypothesis Hy,z for all points y and z in RN , then
w∗(e, z, u0) = w∗(e, u0) for all z ∈ RN and u0 ∈ E .

1.4. Dependence on the initial condition. Some other fundamental questions
concern the possible a priori dependence of w∗(e, u0) or w∗(e, z, u0) on the initial
condition u0 ∈ E , as well as some bounds so for the spreading speeds. For periodic
domains satisfying (1.4), one recalls that the spreading speeds do not depend on u0

(or on z) and are bounded from above by 2
√
f ′(0).

The following theorem provides a general sufficient condition on Ω so that the
spreading speeds w∗(e, u0) and w∗(e, z, u0) not to depend on u0.

Theorem 1.7 (Dependence on u0). Let Ω be a connected open subset of RN and
assume that Ω is globally of class C2,α for some α > 0. Assume also that for all
r ≥ 0,

(1.8) sup
(x,y)∈Ω

2
, |x−y|≤r

dΩ(x, y) < +∞.

Let µz
r denote the Lebesgue measure of Ω ∩ B(z, r) for each z ∈ RN and r > 0.

Assume that there exists R0 > 0 such that µz
r > 0 for all z ∈ R

N and r ≥ R0, and
that µz

r+1/µ
z
r → 1 as r → +∞, uniformly in z ∈ RN .

Let u be the solution of (1.6) with a given initial condition u0 ∈ E . Then u(t, x) →
1 uniformly locally in x ∈ Ω as t → +∞. Furthermore, Ω is strongly unbounded in

2Luckhaus’s comb is the example we use in the second part of Proposition 1.5 above (see
Section 4.1 for the definition).
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any direction e ∈ SN−1 and w∗(e, u0) and w∗(e, z, u0) do not depend on the initial
condition u0, provided that u0 < 1.

Note that the hypothesis (1.8) is a type of strong connectedness assumption
for the domain Ω. Once again, a typical counterexample is Luckhaus’s comb (see
Section 4.1).

1.5. Comparison with the homogeneous case. As far as bounds for the spread-
ing speeds are concerned, the speed 2

√
f ′(0), which is the spreading speed if

Ω = RN , bounds from above the spreading speed if Ω is a periodic domain satis-
fying (1.4). Furthermore, we prove here that the same property turns out to be
true for the large class of domains satisfying the extension property. This class of
domain is defined now: quoting Davies [10], a nonempty open subset Ω of RN is
said to have the extension property if, for all 1 ≤ p ≤ +∞, there exists a bounded
linear map E from W 1,p(Ω) into W 1,p(RN ) such that E(f) is an extension of f
from Ω to RN for all f ∈ W 1,p(Ω). This property is equivalent to the existence of
ε > 0, k ∈ N, M > 0 and of a countable sequence of open sets (Un)n∈N such that:

(i) if x ∈ ∂Ω, then the ball with centre x and radius ε is contained in Un for
some n,

(ii) no point in RN is contained in more than k distinct sets Un,
(iii) for each n, there exists an isometry Tn : R

N → R
N and a Lipschitz-

continuous function φn : RN−1 → R whose Lipschitz norm is bounded by M .
Moreover, Un ∩ Ω = Un ∩ TnΩn, where

Ωn = {(z1, . . . , zN ) ∈ R
N , φn(z1, . . . , zN−1) < zN}.

Any smooth bounded or exterior domain satisfies the extension property. So does
any smooth periodic domain.

Theorem 1.8 (General upper bound). Let Ω be a locally C2 connected open subset
of RN satisfying the extension property. Assume that Ω is strongly unbounded in
a direction e. Let u be the solution of (1.6) with a given initial condition u0 ∈ E .
Then

(1.9) w∗(e, u0) ≤ 2
√
f ′(0)

and

(1.10) ∀ c > 2
√
f ′(0), max

|x|≥ct, x∈Ω
u(t, x) → 0 as t → +∞.

Under the assumptions of Theorem 1.8, inequality (1.9) yields in particular

w∗(e, z, u0) ≤ 2
√
f ′(0)

for all z ∈ RN . Notice that property (1.10) is actually stronger than (1.9). Theo-
rem 1.8 means that, for the large class of domains satisfying the extension property,
the minimal speed of planar fronts, 2

√
f ′(0), turns out to be an upper bound for the

asymptotic spreading speeds in any direction e in which Ω is strongly unbounded,
as for periodic domains.

Furthermore, as already underlined, for a periodic domain Ω satisfying (1.4), for
any unit vector e ∈ R

d×{0}N−d and for any u0 ∈ E , inequality (1.9) is an equality
if and only if Ω is a cylinder in direction e. However, this property is not true for
general domains, as the following subsection shows.
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1.6. Exterior domains. A domain Ω ⊂ RN is called exterior if Ω is a nonempty
connected open subset of RN such that RN\Ω is compact. The simplest example
of an exterior domain is the whole space R

N .

Theorem 1.9 (Exterior domain). Let Ω be an exterior domain of class C2. Then,

∀e ∈ S
N−1, ∀z ∈ R

N , ∀u0 ∈ E , w∗(e, z, u0) = w∗(e, u0) = 2
√
f ′(0).

Furthermore, if u solves (1.6) with u0 ∈ E , one has

(1.11)

⎧⎨
⎩

∀ 0 ≤ c < 2
√
f ′(0), max

|x|≤ct, x∈Ω
|u(t, x)− 1| → 0,

∀ c > 2
√
f ′(0), max

|x|≥ct, x∈Ω
u(t, x) → 0,

as t → +∞.

Remark 1.10. The second property is clearly stronger than the first one. Theo-
rem 1.9 actually extends the classical result of Aronson and Weinberger [1] men-
tioned above, which was concerned with the case of the whole space RN .

1.7. Domains containing large half-cylinders. The arguments which are used
in the proof of Theorem 1.9 imply that if Ω contains a semi-infinite cylinder in the
direction e with a large enough section, then w∗(e, u0) is bounded from below by

a constant close to 2
√
f ′(0). Here, Ω always denotes a nonempty connected open

subset of RN of class C2 (locally). More precisely, one has the following:

Proposition 1.11 (Lower bounds for domains containing large semi-infinite cylin-
ders). Given ε > 0, there exists R0 = R0(ε) > 0 such that if
(1.12)

Ω ⊃ Ce,A,x0,R := {x ∈ RN , x · e > A, |(x− x0)− ((x− x0) · e)e| < R}

=

(⋃
s∈R

B(x0 + se,R)

)
∩ {x · e > A}

for some e ∈ SN−1, A ∈ R, x0 ∈ RN and R > R0, then

(1.13) w∗(e, u0) ≥ 2
√
f ′(0)− ε and w∗(e, z, u0) ≥ 2

√
f ′(0)− ε

for all u0 ∈ E and z ∈ R
N such that |z − x0 − ((z − x0) · e)e| < R.

Thus, if Ω contains a sequence of semi-infinite cylinders of type (Ce,An,x0,n,Rn
)n∈N

with An ∈ R, x0,n ∈ RN and Rn → +∞ as n → +∞, then w∗(e, u0) ≥ 2
√
f ′(0)

for all u0 ∈ E .

Notice that assumption (1.12) automatically implies that Ω is strongly un-
bounded in the direction e. Furthermore, the property of containing a sequence
of such semi-infinite cylinders holds especially if Ω contains a “quarter of space”:

Corollary 1.12. If Ω satisfies

(1.14) Ω ⊃ {x ∈ R
N , x · e > A, x · e′ > B}

for some (A,B) ∈ R2 and e, e′ ∈ SN−1 with e′ · e = 0, then w∗(e, u0) ≥ 2
√
f ′(0)

and w∗(e, z, u0) ≥ 2
√
f ′(0) for all u0 ∈ E and z ∈ R

N such that z · e′ > B.

Exterior domains are typical examples of domains satisfying (1.14). Notice from
the above corollary and Theorem 1.8 that if Ω is a locally C2 connected open subset
of RN satisfying (1.14) and the extension property, then w∗(e, u0) = 2

√
f ′(0) for

all u0 ∈ E .
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1.8. Further examples. As already underlined, any periodic domain Ω satisfying
(1.4) is such that 0 < w∗(e, u0) ≤ 2

√
f ′(0) for all unit vector e ∈ Rd ×{0}N−d and

for all u0 ∈ E . Furthermore, the upper bound holds for a large class of domains (see
Theorem 1.8). However, the following theorem asserts that the spreading speeds
w∗(e, u0) and w∗(e, z, u0) may be zero or infinite for some domains Ω. For the sake
of clarity, we recall that only open connected sets Ω are considered.

Theorem 1.13 (Domains with zero or infinite spreading speeds). a) There are
some locally C2 domains of R2 which satisfy the extension property and are strongly
unbounded in every direction e ∈ S1, and such that w∗(e, z, u0) = w∗(e, u0) = 0 for
all e ∈ S1, z ∈ R2 and u0 ∈ E .

b) For every N ≥ 2 and e ∈ SN−1, there are some locally C2 domains of RN

which do not satisfy the extension property, and such that w∗(e, z, u0) = w∗(e, u0) =
+∞ for all z ∈ RN and u0 ∈ E .

Therefore, even in the class of domains satisfying the extension property, there
are domains for which the asymptotic speeds w∗(e, z, u0) and w∗(e, u0) are zero
in any direction e (such a phenomenon does not happen under the periodicity
condition (1.4)). In the proof of Theorem 1.13, we construct domains which have
the shape of a spiral and for which the asymptotic spreading speeds are zero in all
directions.

Furthermore, there is no universal upper bound without the extension property.
Some domains with an infinite cusp have infinite spreading speeds (see the proof of
Theorem 1.13, part b). For such domains, we prove some new specific lower bounds
for the heat kernel (see Lemma 4.2 in Section 4.3 below).

1.9. Other related notions. Here, we would like to mention some other notions
of spreading speeds. We compare them to the notions introduced in Definitions 1.2
and 1.3 and state their main properties.

First, given a nonempty connected locally C2 open subset Ω of RN and given
e ∈ SN−1 and u0 ∈ E , we can define the asymptotic spreading speed of the leading
edge of the solution u of (1.6) in the direction e, uniformly with respect to the
directions which are orthogonal to e, as

w∗∗(e, u0) = inf

{
c > 0, lim sup

t→+∞
sup

x·e≥ct, x∈Ω

u(t, x) = 0

}
,

provided that Ω satisfies

(1.15) ∃ s ∈ R, ∀ s′ ≥ s, {x ∈ R
N , x · e ≥ s′} ∩ Ω �= ∅.

Notice that if Ω is strongly unbounded in the direction e in the sense of Defini-
tion 1.1, then assumption (1.15) is immediately satisfied. This notion of asymp-
totic spreading speed w∗∗(e, u0) is rougher than the previous ones, w∗(e, u0) or
w∗(e, z, u0), and it does not give a precise description of where or in which precise
direction the leading edge of the solution u moves. However, we can compare it to
the previous notions w∗(e, u0) and w∗(e, z, u0), and we can derive some properties
of w∗∗(e, u0) from the above results.

It is immediate to check that if Ω satisfies (1.15) and if it is strongly unbounded
in a direction e′ ∈ SN−1 such that e′ · e > 0, then

∀ u0 ∈ E , ∀ z ∈ R
N , w∗∗(e, u0) ≥ w∗(e′, u0)× (e′ · e) ( ≥ w∗(e′, z, u0)× (e′ · e)).
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It may then happen that w∗∗(e, u0) > w∗(e, u0) for all u0 ∈ E . For instance, in R2,
call H = {x ∈ R2, x2 − x1 > 0}, let (an)n∈N∗ be a sequence of negative numbers
such that an/n → −∞ as n → +∞, let

Γ =
⋃
n∈N

( [2n, 2n+ 1]× {0} ∪ [2n+ 1, 2n+ 2]× {an+1}

∪ {2n+ 1, 2n+ 2} × [an+1, 0])

and let Ω be a globally smooth open connected domain satisfying the extension
property and such that

H ∪ Γ ⊂ Ω ⊂ {x ∈ R
2, d(x,H ∪ Γ) < 1/3},

where d(x,E) denotes the euclidean distance of a point x to a set E. With e = (1, 0)

and e′ = (1/
√
2, 1/

√
2), one can check that w∗(e, u0) = 0 for all u0 ∈ E (by using the

same arguments as in the proofs of Theorem 1.8 or Theorem 1.13, part a)), while

w∗(e′, u0) = 2
√
f ′(0) for all u0 ∈ E (because of Theorem 1.8 and Corollary 1.12).

Thus,

∀ u0 ∈ E , w∗∗(e, u0) ≥
√
2
√
f ′(0) > 0 = w∗(e, u0).

Furthermore, with the same arguments as in the proofs of Theorems 1.7, 1.8, 1.9
and 1.13, the following properties hold:

1) if Ω satisfies the general assumptions of Theorem 1.7, then assumption (1.15)
is satisfied for all e ∈ SN−1 and w∗∗(e, u0) does not depend on u0 ∈ E , provided
that u0 < 1;

2) if Ω satisfies the assumptions of Theorem 1.8 (extension property), then,

because of (1.10), w∗∗(e, u0) ≤ 2
√
f ′(0) for all u0 ∈ E and for any direction e ∈

SN−1 such that (1.15) holds;
3) if Ω satisfies the assumptions of Theorem 1.9 (exterior domain), then, because

of (1.11), w∗∗(e, u0) = 2
√
f ′(0) for all e ∈ SN−1 and for all u0 ∈ E ;

4) with the same examples as in Theorem 1.13, there are some domains of R2

satisfying (1.15) for all e ∈ S1 and such that w∗∗(e, u0) = 0 for all e ∈ S1 and for
all u0 ∈ E ;

5) given e ∈ S
N−1, there are some domains of RN satisfying (1.15) and such that

w∗∗(e, u0) = +∞ for all u0 ∈ E .
In the previous definitions, we chose to consider the leading edge of the region

where the reaction starts. It is also of interest to consider the location of the region
behind which the reaction is completed. Thus we also introduce the notion of
asymptotic spreading speeds, locally uniformly in the direction e or locally along a
line z + R+e, of the expanding region where u converges to 1.

Namely, let Ω be strongly unbounded in a direction e ∈ SN−1 and let u solve
(1.6) with a given initial condition u0 ∈ E . We assume here that u(t, x) → 1 as
t → +∞ locally uniformly in x ∈ Ω. We then define, under the same notation as
above,

w∗(e, u0) = sup

⎧⎨
⎩c > 0, ∀ A > R(e), lim sup

(τ,t)→(+∞,+∞)
τ≤ct

⎡
⎣ sup

τ≤s≤ct

x∈B(se,A)∩Ω

|u(t, x)− 1|

⎤
⎦ = 0

⎫⎬
⎭
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and, for z ∈ RN ,

w∗(e, z, u0) = sup

⎧⎨
⎩c > 0, ∃ A > 0, lim sup

(τ,t)→(+∞,+∞)
τ≤ct

⎡
⎣ sup

τ≤s≤ct

x∈B(z+se,A)∩Ω

|u(t, x)− 1|

⎤
⎦=0

⎫⎬
⎭.

By convention, we set w∗(e, u0) = 0 if u(t, x) → 1 as t → +∞ locally uniformly in
x ∈ Ω but if there is no c > 0 such that, for all A > R(e), lim sup(τ,t)→(+∞,+∞), τ≤ct

supτ≤s≤ct, x∈B(se,A)∩Ω |u(t, x) − 1| = 0. We set w∗(e, z, u0) = 0 if u(t, x) → 1 as

t → +∞ locally uniformly in x ∈ Ω and

lim sup
(τ,t)→(+∞,+∞)

τ≤ct

⎡
⎣ sup

τ≤s≤ct

x∈B(z+se,A)∩Ω

|u(t, x)− 1|

⎤
⎦ �= 0,

for all c > 0 and A > 0.
It follows immediately from the above definitions that

(1.16) w∗(e, u0) ≤ w∗(e, z, u0) ≤ w∗(e, z, u0) ≤ w∗(e, u0)

for all z ∈ RN and u0 ∈ E .
If Ω is a periodic domain satisfying (1.4), then, because of (1.5), the inequalities

(1.16) are all equalities for all e ∈ Rd × {0}N−d, z ∈ RN and u0 ∈ E . If Ω is

an exterior domain, all quantities in (1.16) are equal to 2
√
f ′(0); see Theorem 1.9

and item 5) below. However, it is an important open problem to determine under
which condition on the domain Ω the equality w∗(e, z, u0) = w∗(e, z, u0) holds.
This question is left open.

Furthermore, with the same arguments as the ones used in the next sections,
one can prove the following properties:

1) if Ω is locally C2 and strongly unbounded in a direction e ∈ S
N−1, then

∀ u0 ∈ E , w∗(e, u0) = inf
z∈RN

w∗(e, z, u0);

2) if Ω is strongly unbounded in a direction e ∈ SN−1 and locally uniformly of
class C2,α with α > 0, if Hypothesis Hy,z is satisfied for some points y and z in
RN , and if u0 ∈ E is less than 1, then w∗(e, y, u0) = w∗(e, z, u0);

3) if Ω satisfies the general assumptions of Theorem 1.7, then w∗(e, u0) and
w∗(e, z, u0) are nonnegative and do not depend on u0 ∈ E , provided that u0 < 1;

4) if Ω satisfies the assumptions of Theorem 1.8 (extension property), then,

because of (1.10), w∗(e, u0) ≤ w∗(e, z, u0) ≤ 2
√
f ′(0) for all u0 ∈ E , z ∈ RN and

for any direction e ∈ SN−1 in which Ω is strongly unbounded;
5) if Ω satisfies the assumptions of Theorem 1.8 (exterior domain), then, because

of (1.11), w∗(e, u0) = w∗(e, z, u0) = 2
√
f ′(0) for all e ∈ SN−1, for all z ∈ RN and

for all u0 ∈ E ;
6) given e ∈ SN−1, there are some domains of RN which are strongly unbounded

in the direction e and such that w∗(e, u0) = w∗(e, z, u0) = +∞ for all u0 ∈ E and
z ∈ RN .
Outline of the paper. The paper is organized as follows: Section 2 is devoted to
the proof of the general properties (formula (1.7) in Proposition 1.5 and Theorems
1.6, 1.7, 1.8). Section 3 is concerned with exterior domains (Theorem 1.9) and with
the case of domains containing half-cylinders (Proposition 1.11). Section 4 deals
with the construction of some domains for which the spreading speeds w∗(e, z, u0)
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really depend on z (the second assertion of Proposition 1.5). We also exhibit in
Section 4 some domains with zero or infinite speeds of propagation (Theorem 1.13).

2. General properties: Dependence on z, on u0,

and general upper bound

This section is devoted to the proofs of formula (1.7) and Theorems 1.6, 1.7 and
1.8. More precisely, we prove in Section 2.1 the relationship between the spreading
speeds w∗(e, u0) and w∗(e, z, u0). In Section 2.2, we study the dependence on u0.
Lastly, in Section 2.3, we prove the general upper bound for the spreading speeds
in the large class of domains satisfying the extension property.

2.1. Relationship between w∗(e, z, u0) and w∗(e, u0). Here we first prove the
general formula (1.7) in Proposition 1.5.3 We then prove Theorem 1.6 under the
asymptotic connectedness assumption Hy,z.

Proof of formula (1.7) in Proposition 1.5. Let Ω ⊂ R
N be strongly unbounded in

a given direction e ∈ SN−1 and let u0 ∈ E be given. Call R = R(e) the real number
defined in Definition 1.1.

As already emphasized, the inequality

0 ≤ w∗(e, z, u0) ≤ w∗(e, u0)

follows from Definitions 1.2 and 1.3, for all z ∈ RN . Notice also that formula (1.7)
is immediate in the case where w∗(e, u0) = 0. One can then assume here that
w∗(e, u0) > 0. Fix any ε ∈ (0, w∗(e, u0)) and set

γ = w∗(e, u0)− ε.

There exists A > R such that

sup
s≥γt, x∈B(se,A)∩Ω

u(t, x) �→ 0 as t → +∞.

Therefore, there exist some sequences (tn)n∈N → +∞, (sn)n∈N such that sn ≥ γtn,
and some points (xn)n∈N in BA such that xn + sne ∈ Ω and

(2.1) lim inf
n→+∞

u(tn, xn + sne) > 0.

Up to extraction of some subsequence, one can assume that xn → z ∈ BA.
We now claim that

w∗(e, z, u0) ≥ γ.

Assume not. Then, owing to Definition 1.3, there is A′ > 0 such that

sup
s≥γt, x∈BA′ , x+z+se ∈ Ω

u(t, x+ z + se) → 0 as t → +∞.

For n large enough, xn − z ∈ BA′ . On the other hand, sn ≥ γtn and (xn − z)+ z+
sne = xn + sne ∈ Ω. Thus, u(tn, xn + sne) → 0 as n → +∞. This contradicts
(2.1).

Therefore, the claim w∗(e, z, u0) ≥ γ is proved. Hence,

w∗(e, z, u0) ≥ w∗(e, u0)− ε

for all ε > 0, and formula (1.7) follows. �

3The proof of the second assertion in Proposition 1.5 shall be given in Section 4.
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Proof of Theorem 1.6. Assume that Ω is strongly unbounded in the direction e,
globally of class C2,α for some α > 0, and that Hypothesis Hy,z is satisfied for
some points y and z in RN . Under the notation of Hypothesis Hy,z , there exist
Ry > R(e, y), Rz > R(e, z), A ≥ 0 and s0 > 0 such that

∀ s ≥ s0, sup
y′∈B(y+se,Ry)∩Ω

z′∈B(z+se,Rz)∩Ω

dΩ(y
′, z′) ≤ A.

Notice that this means in particular that

∀ s ≥ s0, B(y + se,Ry) ∩ Ω �= ∅ and B(z + se,Rz) ∩ Ω �= ∅.
Fix any u0 in E and let u solve (1.6). If both spreading speeds w∗(e, y, u0)

and w∗(e, z, u0) are infinite, then the desired conclusion w∗(e, y, u0) = w∗(e, z, u0)
follows. Assume now that at least one of the spreading speeds, say w∗(e, z, u0),
is finite. Fix any c > w∗(e, z, u0). From the above asymptotic connectedness
property and from the global smoothness of Ω, Harnack inequality applied in Ω
(see [17, 30, 31]) yields the existence of η > 0 such that

(2.2) ∀ t ≥ 1, ∀ s ≥ s0, max
y′∈B(y+se,Ry)∩Ω

u(t, y′) ≤ η min
z′∈B(z+se,Rz)∩Ω

u(t+1, z′).

On the other hand, owing to Definition 1.3, there exist c′ ∈ (w∗(e, z, u0), c) and
R > 0 such that

sup
s′≥c′t′, z′∈B(z+s′e,R)∩Ω

u(t′, z′) → 0 as t′ → +∞.

As already noted in Remark 1.4, one can assume, even if it means decreasing R,
that R ≤ Rz.

Let ε be any positive real number. Then there exists t0 ≥ 1 such that

∀ t′ ≥ t0, ∀ s′ ≥ c′t′, max
z′∈B(z+s′e,R)∩Ω

u(t′, z′) ≤ ε.

One can assume without loss of generality that t0 is large enough so that ct0 ≥ s0
and

∀ t ≥ t0, ct ≥ c′(t+ 1).

This is indeed possible since c > c′. Now choose any t ≥ t0 and s ≥ ct. Observe
that t+ 1 ≥ t0 and

s ≥ ct ≥ c′(t+ 1),

whence

(2.3) max
z′∈B(z+se,R)∩Ω

u(t+ 1, z′) ≤ ε.

Since t ≥ t0 ≥ 1 and s ≥ ct ≥ ct0 ≥ s0, and since R ≤ Rz, it follows from (2.2) and
(2.3) that

max
y′∈B(y+se,Ry)∩Ω

u(t, y′) ≤ η min
z′∈B(z+se,R)∩Ω

u(t+ 1, z′) ≤ η ε.

Since this is true for all t ≥ t0 and s ≥ ct and since η is independent of ε, one
obtains

sup
s≥ct, y′∈B(y+se,Ry)∩Ω

u(t, y′) → 0 as t → +∞.

Therefore, w∗(e, y, u0) is finite and w∗(e, y, u0) ≤ c. Since this inequality holds for
all c > w∗(e, z, u0), one obtains w∗(e, y, u0) ≤ w∗(e, z, u0).
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By changing the role of y and z, one then concludes that w∗(e, y, u0)=w∗(e, z, u0),
and the proof of Theorem 1.6 is complete. �

Remark 2.1. We prove here that if Ω is strongly unbounded in a direction e ∈ SN−1

and if Hypothesis Hy,z is satisfied for some y, z ∈ RN , then so is Hy+αe,z+βe for any
(α, β) ∈ R2. Assume Hy,z and let (α, β) ∈ R2 be given. Then there exist A ≥ 0,
s0 > 0 and some radii Ry > R′

y > R(e, y) and Rz > R′
z > R(e, z) such that

∀ s ≥ s0,

⎧⎪⎪⎨
⎪⎪⎩

B(y + se,Ry) ∩ Ω ⊃ B(y + se,R′
y) ∩ Ω �= ∅,

B(z + se,Rz) ∩ Ω ⊃ B(z + se,R′
z) ∩ Ω �= ∅,

∀y′ ∈ B(y + se,Ry) ∩ Ω, ∀z′ ∈ B(z + se,Rz) ∩ Ω, dΩ(y
′, z′) ≤ A.

As a consequence,

(2.4) ∀ s ≥ s0, ∀ y′, y′′ ∈ B(y + se,Ry) ∩ Ω, dΩ(y
′, y′′) ≤ 2A.

Let n ∈ N\{0} be such that ε = α/n satisfies |ε| ≤ Ry −R′
y. It follows that, for all

k = 0, . . . , n− 1 and for all s ≥ s0 + |α|, there holds

B(y + se+ kεe,Ry)∩B(y + se+ (k + 1)εe,Ry)∩Ω ⊃ B(y + se+ kεe,R′
y)∩Ω �= ∅.

Therefore, for any s ≥ s0+|α|, y′ ∈ B(y + se,Ry)∩Ω and y′′ ∈ B(y + se+ αe,Ry)∩
Ω, there is a sequence of points (yk)0≤k≤n−1 such that

∀ k = 0, . . . , n− 1, yk ∈ B(y + se+ kεe,Ry) ∩B(y + se+ (k + 1)εe,Ry) ∩ Ω,

whence

dΩ(y
′, y′′) ≤ dΩ(y

′, y0)+dΩ(y0, y1)+· · ·+dΩ(yn−2, yn−1)+dΩ(yn−1, y
′′) ≤ 2A(n+1)

from (2.4). As a consequence,

lim sup
s→+∞

sup
y′∈B(y+se,Ry)∩Ω

y′′∈B(y+se+αe,Ry)∩Ω

dΩ(y
′, y′′) < +∞.

The same conclusion holds with (z,Rz, β) instead of (y,Ry, α). As a conclusion,

lim sup
s→+∞

sup
y′∈B(y+se+αe,Ry)∩Ω

z′∈B(z+se+βe,Rz)∩Ω

dΩ(y
′, z′) < +∞;

that is, Hypothesis Hy+αe,z+βe is satisfied.

2.2. Dependence on the initial datum. The proof of Theorem 1.7 is based on
some auxiliary results. Let us first introduce some notation. If D is an open subset
of RN such that Ω ∩D �= ∅, we say

(2.5) λD = inf
ψ∈C1

c (Ω∩D), ψ 
≡0

∫
Ω∩D

|∇ψ|2∫
Ω∩D

ψ2
,

where C1
c (Ω ∩D) denotes the set of functions which are of class C1 in Ω ∩D and

have a support which is compactly included in Ω ∩D. It follows immediately that
the map D �→ λD is nonincreasing with respect to the inclusion (in the class of
open sets D such that Ω ∩D �= ∅).
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Note that the definition of λD heuristically corresponds to the principal eigen-
value problem with mixed boundary conditions:

(2.6)

⎧⎨
⎩

−∆ψ = λDψ in Ω ∩D,
ψ = 0 on ∂D ∩ Ω,

ν · ∇ψ = 0 on ∂Ω ∩D.

However, since no regularity on Ω∩D is assumed, the meaning of (2.6) is somewhat
delicate. Hence, this is only formal. Therefore, we prefer to deal directly with the
definition (2.5) of λD rather than with the eigenvalue problem (2.6).

Under the assumptions of Theorem 1.7, for all r ≥ R0 and z ∈ RN , we say

λz
r = λB(z,r),

where we recall that B(z, r) denotes the open euclidean ball of radius r and centre
z.

Lemma 2.2. Under the assumptions of Theorem 1.7,

λz
r → 0 as r → +∞ uniformly in z ∈ R

N .

Proof. Fix a family (ζr)r≥R0
of C∞(RN ) functions such that, for each r ≥ R0, the

support of ζr is included in B(0, r + 1) and ζr = 1 in B(0, r). One can choose the
functions ζr so that

‖ζr‖C1(B(0,r+1)) = ‖ζr‖∞ + ‖∇ζr‖∞ ≤ C,

where C is a positive constant which is independent of r ≥ R0.
Let r ≥ R0 and let z be any point in RN . Call ζzr the function defined by

ζzr (x) = ζr(x− z) for all x ∈ R
N . One has

0 ≤ λz
r+1 ≤

∫
Ω∩B(z,r+1)

|∇ζzr |2∫
Ω∩B(z,r+1)

(ζzr )
2

≤ C2 |Ω ∩ (B(z, r + 1)\B(z, r))|
|Ω ∩B(z, r)| = C2µ

z
r+1 − µz

r

µz
r

,

where |E| denotes the Lebesgue measure of E ⊂ RN . Since µz
r+1/µ

z
r → 1 uniformly

in z ∈ R
N as r → +∞, the conclusion of Lemma 2.2 follows. �

Since the proof of Theorem 1.7 is somewhat involved, we start with a simpler case
which is of independent interest. Even though it can be seen to be a consequence
of Theorem 1.7, here we include the proof, since the ideas will be clearer in the
elliptic case than in the parabolic case which involves several technical difficulties.

Theorem 2.3. Let Ω be a domain satisfying the assumptions of Theorem 1.7. Let
g : [0,+∞) → R be a C1 function such that g(0) = g(1) = 0, g′(0) > 0, g > 0 in
(0, 1) and g < 0 in (1,+∞). Let u be a classical bounded solution of

(2.7)

⎧⎨
⎩

∆u+ g(u) = 0 in Ω,
u ≥ 0 in Ω,

ν · ∇u = 0 on ∂Ω.

Then u ≡ 0 or u ≡ 1.

Proof. Assume that u �≡ 0. Then u > 0 in Ω from the strong maximum principle
and the Hopf lemma. We first prove that

(2.8) m := inf
Ω

u > 0.
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Assume not. Under the notation of Theorem 1.7, Lemma 2.2 yields the existence
of R ≥ R0 such that

∀ z ∈ R
N , λz

R <
g′(0)

2
.

Then there exists a sequence of points (zn)n∈N in Ω such that u(zn) → 0 as n →
+∞. From the connectedness assumption (1.8) and the global smoothness of Ω,
Harnack inequality applied in Ω implies that

max
|z−zn|≤R, z∈Ω

u(z) → 0 as n → +∞.

Therefore, there is M ∈ N such that

(2.9) 0 ≥ ∆u+
g′(0)

2
u in B(zM , R) ∩ Ω.

Since λzM
R < g′(0)/2, there is a function w ∈ C1

c (Ω ∩ B(zM , R)) such that w �≡ 0
and

(2.10)

∫
Ω∩B(zM ,R)

|∇w|2∫
Ω∩B(zM ,R)

w2
<

g′(0)

2
.

Multiply (2.9) by w2/u ≥ 0 and integrate by parts over Ω∩B(zM , R). One can think
of w in (2.10) as an approximation of an eigenfunction of (2.6). Since ν · ∇u = 0
on ∂Ω and w ∈ C1

c (Ω ∩B(zM , R)), one obtains

0 ≥ g′(0)

2

∫
Ω∩B(zM ,R)

w2 −
∫
Ω∩B(zM ,R)

∇u · ∇
(
w2

u

)

=
g′(0)

2

∫
Ω∩B(zM ,R)

w2 − 2

∫
Ω∩B(zM ,R)

w∇u · ∇w

u
+

∫
Ω∩B(zM ,R)

w2|∇u|2
u2

≥ g′(0)

2

∫
Ω∩B(zM ,R)

w2 −
∫
Ω∩B(zM ,R)

|∇w|2.

The last inequality contradicts property (2.10).
Hence, the claim (2.8) holds. Now choose ξ0 such that

0 < ξ0 < min(m, 1),

and let ξ(t) be the solution of ξ̇(t) = g(ξ(t)) with ξ(0) = ξ0. Since g > 0 on (0, 1)

and g(1) = 0, one obtains ξ̇(t) > 0 for all t ≥ 0 and ξ(+∞) = 1. On the other hand,
since u solves (2.7), the parabolic maximum principle implies that u(z) ≥ ξ(t) for
all z ∈ Ω and t ≥ 0. Thus, m ≥ 1.

Similarly, using the fact that g < 0 in (1,+∞), one obtains supΩ u ≤ 1. As a
conclusion, u ≡ 1, and the proof of Theorem 2.3 is complete. �

Remark 2.4. It can be seen (in the case Ω = R
N , without the boundary conditions)

that the conclusion of Theorem 2.3 is not true without the boundedness assumption.
For instance, let g be any C1([0,+∞)) function such that g(s) = 1−s for all s ≥ 1.
Then, for any unit vector α ∈ RN , the function w = 1 + eα·x is a nonnegative
unbounded solution of ∆w + g(w) = 0 in R

N .
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Proof of Theorem 1.7. Let u be a solution of (1.6) with a given initial condition
u0 ∈ E . We shall prove here that u(t, x) → 1 uniformly locally in x ∈ Ω as
t → +∞. The proof is much more delicate than the elliptic analogue. The reason
is that the time at which the solution u will be above a suitably chosen positive
number in any given compact set does depend on the compact set.

As above, since u0 is bounded, there is M > 1 such that u0 ≤ M in Ω. Hence

u(t, x) ≤ ζ(t)

for all t ≥ 0 and x ∈ Ω, where ζ solves ζ̇(t) = f(ζ(t)) with ζ(0) = M . Since f is
negative in (1,+∞) and vanishes at 1, one has that 1 ≤ ζ(t) ≤ M for all t ≥ 0 and
ζ(t) → 1 as t → +∞. Hence u(t, x) ≤ M for all t ≥ 0 and x ∈ Ω, and

(2.11) lim sup
t→+∞

(
sup
x∈Ω

u(t, x)

)
≤ 1.

Let us now prove a lower estimate. To do so, choose R ≥ R0 such that

∀ z ∈ R
N , λz

R <
f ′(0)

2
.

This is possible thanks to Lemma 2.2. Owing to the choices of R and R0, one
knows that Ω ∩ B(z,R) �= ∅ for all z ∈ R

N . Furthermore, since Ω is globally
smooth and satisfies (1.8), Harnack inequality applied in Ω yields the existence of
a constant C > 0 such that, for any solution v of (1.6) with an initial condition
v0 ∈ E satisfying v0 ≤ 1, the following inequality holds:

(2.12) ∀ t ≥ 1, ∀ z ∈ R
N , min

Ω∩B(z,R)
v(t+ 1, ·) ≥ C max

Ω∩B(z,R)
v(t, ·).

Notice that all such solutions v satisfy 0 ≤ v(t, x) ≤ 1 for all t ≥ 0 and x ∈ Ω.
Also let s0 ∈ (0, 1) be such that

∀ s ∈ [0, s0], f(s) ≥ f ′(0)

2
s.

Since u(1, ·) is a positive continuous function in Ω, there exists v0 ∈ E such that

supp(v0) ⊂ Ω ∩B(0, R) and v0(x) ≤ min(1, Cs0, u(1, x)) in Ω,

where supp(v0) denotes the support of v0. Notice that 0 < v(t, x) < 1 < M for all
t > 0 and x ∈ Ω from the strong parabolic maximum principle.

We now claim that

(2.13) ∀ z0 ∈ R
N , ∃ tz0 ≥ 2, v(tz0 , ·) ≥ Cs0 in Ω ∩B(z0, R).

Assume that this is not the case for some point z0 ∈ RN . From (2.12), it then
follows that

(2.14) ∀ t ≥ 1, max
Ω∩B(z0,R)

v(t, ·) ≤ s0.

In view of the choice of s0, we know that

(2.15) ∀ t ≥ 1, ∀ x ∈ Ω ∩B(z0, R), vt(t, x) ≥ ∆v(t, x) +
f ′(0)

2
v(t, x).

Since λz0
R < f ′(0)/2, there is a function w ∈ C1

c (Ω∩B(z0, R)) such that w �≡ 0 and∫
Ω∩B(z0,R)

|∇w|2 <
f ′(0)

2
×
∫
Ω∩B(z0,R)

w2.
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For each fixed t ≥ 1, set

Θ(t) =

∫
Ω∩B(z0,R)

w2(x) ln v(t, x)dx.

Multiply (2.15) by w2/v(t, ·) ≥ 0 and integrate by parts over Ω ∩ B(z0, R). The
same calculations as in Theorem 2.3 then give

(2.16) ∀ t ≥ 1, Θ′(t) ≥ f ′(0)

2
×
∫
Ω∩B(z0,R)

w2 −
∫
Ω∩B(z0,R)

|∇w|2.

From the choice of w, the right-hand side of (2.16) is a positive number which is
independent of t. Therefore, Θ(t) → +∞ as t → +∞. However,

Θ(t) ≤ (ln s0)×
∫
Ω∩B(z0,R)

w2(x)dx

for all t ≥ 1, thanks to (2.14). One has then reached a contradiction.
Therefore, the claim (2.13) has been proved. Now, from Harnack inequality

applied to v in Ω, there exists a constant C ′ > 0 such that

(2.17) min
t+1≤s≤t+1+t0

(
min

Ω∩B(z0,R)
v(s, ·)

)
≥ C ′ max

Ω∩B(z0,R)
v(t, ·)

for all t ≥ 2 and z0 ∈ R
N . On the other hand, from the choice of v0 and from (2.13)

applied at z0 = 0, it follows that

v(t0, ·) ≥ v0 in Ω.

Hence v(t + t0, x) ≥ v(t, x) for all t ≥ 0 and x ∈ Ω from the parabolic maximum
principle. As a consequence, from (2.13) we infer that

max
Ω∩B(z0,R)

v(tz0 + kt0, ·) ≥ min
Ω∩B(z0,R)

v(tz0 + kt0, ·) ≥ Cs0

for all k ∈ N and for all z0 ∈ RN . Together with (2.17), one obtains

min
Ω∩B(z0,R)

v(t, ·) ≥ C ′Cs0

for all t ≥ tz0 + 1 and for all z0 ∈ R
N .

Lastly, u(t + 1, x) ≥ v(t, x) for all t ≥ 0 and x ∈ Ω from the choice of v0.
Therefore,

(2.18) ∀ z0 ∈ R
N , ∀ t ≥ tz0 + 2, min

Ω∩B(z0,R)
u(t, ·) ≥ C ′Cs0 > 0,

where we recall that the positive constants C, C ′ and s0 do not depend on the point
z0. Now pick any sequence (tn)n∈N of positive real numbers such that tn → +∞
as n → +∞. Recall that 0 ≤ u(t, x) ≤ M for all t ≥ 0 and x ∈ Ω. From standard
parabolic estimates, up to extraction of a subsequence, the functions

un(t, x) = u(t+ tn, x)

converge locally uniformly in (t, x) ∈ R×Ω to a classical nonnegative solution U of{
Ut = ∆U + f(U) in Ω, t ∈ R,

ν · ∇U = 0 on ∂Ω, t ∈ R.

One knows that U(t, x) ≤ 1 for all (t, x) ∈ R× Ω from (2.11). Furthermore,

U(t, x) ≥ C ′Cs0 > 0 for all (t, x) ∈ R× Ω
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from (2.18). Notice that this implies in particular that 0 < CC ′s0 ≤ 1. Now call
ω(t) the solution of ω̇(t) = f(ω(t)) for all t ≥ 0 with ω(0) = CC ′s0. Since f > 0
in (0, 1) and f(1) = 0, one has ω(t) → 1 as t → +∞. For any t ∈ R and T > 0,
since U(t− T, ·) ≥ CC ′s0 in Ω, the maximum principle implies that U(t, ·) ≥ ω(T )
in Ω. Since this holds for all t ∈ R and T > 0, one concludes that U(t, x) ≥ 1 for
all (t, x) ∈ R× Ω. Eventually,

U = 1 in R× Ω,

and by uniqueness of the limit, it follows that

u(t, x) → 1

locally uniformly in x ∈ Ω as t → +∞.
Now let u0 and v0 be two continuous, nonnegative and nonzero functions which

are compactly supported in Ω. Assume that u0 and v0 are less than 1. Let e be a
unit vector in RN . Notice that the assumptions in Theorem 1.7 readily imply that
Ω is strongly unbounded in the direction e. Since maxΩ v0 < 1 and v0 is compactly
supported, it follows from the first part of the proof of Theorem 1.7 that

u(t0, x) ≥ v0(x)

for all x ∈ Ω, for some t0 ≥ 0. Therefore, u(t + t0, x) ≥ v(t, x) for all t ≥ 0 and
x ∈ Ω, whence w∗(e, u0) ≥ w∗(e, v0).

Changing the roles of u and v leads to the inequality w∗(e, v0) ≥ w∗(e, u0).
Therefore, w∗(e, u0) = w∗(e, v0).

The same arguments also imply that

w∗(e, z, u0) = w∗(e, z, v0)

for all e ∈ S
N−1, z ∈ R

N and (u0, v0) ∈ E2 with u0, v0 < 1 in Ω. The proof of
Theorem 1.7 is thus complete. �

2.3. Upper bound for domains with the extension property. This section
is devoted to the proof of Theorem 1.8. To do so, we first state a general upper
bound for the heat kernel in domains satisfying the extension property. This upper
bound follows from general results of Davies [10] and Grigor’yan [16].

Proposition 2.5. Let Ω be a locally C2 nonempty connected open subset of RN

satisfying the extension property. Call p(t, ·, ·) the heat kernel in Ω with Neumann
boundary condition on ∂Ω. Then for any C0 > 4, there exist two positive constants
C and δ such that

(2.19) ∀ t > 0, ∀ (z, x) ∈ Ω×Ω, p(t, z, x) ≤ C×(1+(δt)−N/2)×exp

[
−dΩ(z, x)

2

C0t

]
,

where dΩ denotes the geodesic distance in Ω.

Proof. Let C0 > 4 be given. Since Ω satisfies the extension property, it follows from
Theorem 2.4.4 by Davies [10] that there exists C1 > 0 such that 0 ≤ p(t, z, x) ≤
C1t

−N/2 for all 0 < t ≤ 1 and for all (z, x) ∈ Ω× Ω. The maximum principle then
yields p(t, z, x) ≤ C1 for all t ≥ 1 and (z, x) ∈ Ω× Ω. In particular,

∀ t > 0, ∀ x ∈ Ω, p(t, x, x) ≤ 1

g(t)
,

where g(t) = (C1t
−N/2 + C1)

−1.
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The function g is “regular” in the sense of [16], and, since C0 > 4, it follows
from the Gaussian upper bounds by Grigor’yan [16] that there exist two positive
constants δ and C2, which only depend on C0 and g, such that

∀ t > 0, ∀ (z, x) ∈ Ω× Ω, p(t, z, x) ≤ C2

g(δt)
exp

[
−dΩ(z, x)

2

C0t

]
.

The conclusion of Proposition 2.5 follows with C = C1C2. �

Proof of Theorem 1.8. As already mentioned, it is sufficient to prove property (1.10).

Fix a speed c > 2
√
f ′(0) and u0 ∈ E . Then let R0 > 0 be such that BR0

contains
the support of u0 and let C0 > 4, ε > 0 and t0 > 0 be such that

(2.20) ∀ t ≥ t0, ∀ z ∈ BR0
, ∀ |x| ≥ ct,

|z − x|2
C0t

≥ (f ′(0) + ε)t.

Call v(t, x) the solution of{
vt = ∆v,

ν · ∇v = 0 on ∂Ω

with initial condition u0. Since f(s) ≤ f ′(0)s for all s ≥ 0, the maximum principle
yields

0 ≤ u(t, x) ≤ v(t, x)× exp(f ′(0)t)

for all t ≥ 0 and x ∈ Ω.
The function v can be written as

v(t, x) =

∫
Ω

p(t, z, x)u0(z)dz =

∫
BR0

p(t, z, x)u0(z)dz.

From Proposition 2.5, there exist two positive constants C and δ such that

v(t, x) ≤ C‖u0‖∞ × (1 + (δt)−N/2)×
∫
BR0

exp

[
−dΩ(z, x)

2

C0t

]
dz

for all t > 0 and x ∈ Ω. Therefore,

0 ≤ u(t, x) ≤ C exp(f ′(0)t)‖u0‖∞ × (1 + (δt)−N/2)×
∫
BR0

exp

[
−|z − x|2

C0t

]
dz

for all t > 0 and x ∈ Ω. One concludes from (2.20) that

0 ≤ u(t, x) ≤ C‖u0‖∞ × (1 + (δt)−N/2)× |BR0
| exp(−εt)

for all t ≥ t0 and |x| ≥ ct, x ∈ Ω (remember that |BR0
| denotes the Lebesgue

measure of the ball BR0
). The estimate (1.10) follows, whence

w∗(e, z, u0) ≤ w∗(e, u0) ≤ 2
√
f ′(0)

for all z ∈ RN and u0 ∈ E . �
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3. Exterior domains and domains containing large half-cylinders

This section is devoted to the proofs of Theorem 1.9 and Proposition 1.11. We
first deal with the case of exterior domains.

Lemma 3.1. Let Ω be an exterior domain of RN of class C2, let u0 �≡ 0 be
nonnegative, continuous, bounded in Ω and let u(t, x) be the solution of (1.6) with
initial condition u0. Assume that f : R+ → R is C1 and such that f(0) = f(1) = 0,
f ′(0) > 0, f > 0 on (0, 1) and f < 0 on (1,+∞). Then u(t, x) → 1 locally uniformly
in x ∈ Ω as t → +∞.

If Ω were smoother (of class C2,α), then Lemma 3.1 would follow from Theo-
rem 1.7. The proof of Lemma 3.1 is actually simpler than that of the first part of
Theorem 1.7.

Proof of Lemma 3.1. First of all, as in the proof of Theorem 1.7, it follows from
the boundedness of u0 and from the profile of f that

(3.1) lim sup
t→+∞

(
sup
x∈Ω

u(t, x)

)
≤ 1.

Choose R > 0 large enough so that λR < f ′(0), where (λR, ψR) is the pair of
the first eigenvalue and the first eigenfunction of the problem

(3.2)

⎧⎪⎪⎨
⎪⎪⎩

−∆ψR = λRψR in BR,
ψR > 0 in BR,
ψR = 0 on ∂BR,

‖ψR‖L∞(BR) = 1.

This is indeed possible since λρ → 0 as ρ → +∞.
Then fix R0 > 0 such that

R
N\Ω ⊂ BR0

.

From the strong parabolic maximum principle, one has u(t, x) > 0 for all t > 0 and
x ∈ Ω. Therefore, by continuity, there exists ε ∈ (0, 1) such that

u(1, x) ≥ ε for all x such that R0 ≤ |x| ≤ R0 + 2R.

Even if it means decreasing ε > 0, one can assume from the choice of R that

∆(εψR) + f(εψR) = −ελRψR + f(εψR) ≥ 0 in BR.

Since

u(1, x) ≥ ε ≥ εψR(x− x0) for all x ∈ B(x0, R)

and for all x0 ∈ RN such that |x0| = R0 +R, it follows that

u(1 + t, x) ≥ v(t, x) for all t ≥ 0 and for all x ∈ Ω,

where v is the solution of (1.6) with initial condition v0(x) = max|x0|=R0+R v0,x0
(x)

defined by

v0,x0
(x) =

{
εψR(x− x0) if x ∈ B(x0, R),

0 if x ∈ Ω \ B(x0, R).

The function v0 is a subsolution for the associated elliptic equation and v(t, x) is
then nondecreasing with respect to t. Moreover, v0 ≤ 1 in Ω, whence v(t, x) ≤ 1
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for all t ≥ 0 and x ∈ Ω. Hence, standard parabolic estimates imply that v(t, x)
converges locally uniformly in x ∈ Ω as t → +∞ to a classical solution v∞ of{

∆v∞ + f(v∞) = 0 in Ω,
ν · ∇v∞ = 0 on ∂Ω.

Furthermore, v0 �≡ 0 and 0 ≤ v0 ≤ 1. Thus, 0 ≤ v0 ≤ v∞ ≤ 1 and even v∞ > 0,
v∞ > v0 in Ω from the strong elliptic maximum principle.

Take any point x0 ∈ RN such that |x0| = R0 + R. By continuity, there exists
η0 > 1 such that

v∞(x) > εψR(x− ηx0) for all x ∈ B(ηx0, R)

and for all η ∈ [1, η0]. Notice that B(ηx0, R) ⊂ Ω for all η ≥ 1. Say

η∗ = sup {η ≥ 1, v∞(x)>εψR(x−η′x0) for all x∈B(η′x0, R) and for all η′∈ [1, η]}.

One has η∗ ≥ η0 > 1, and one shall prove that η∗ = +∞. Assume on the contrary
that η∗ is finite. By continuity,

v∞(x) ≥ εψR(x− η∗x0) for all x ∈ B(η∗x0, R),

and there exists a point x∗ ∈ B(η∗x0, R) such that v∞(x∗) = εψR(x
∗−η∗x0). From

the strong elliptic maximum principle it follows that

v∞(x) = εψR(x− η∗x0) for all x ∈ B(η∗x0, R).

But v∞(x) > 0 = εψR(x− η∗x0) for all x ∈ ∂B(η∗x0, R) (⊂ Ω), and one has then
reached a contradiction. Thus, η∗ = +∞ and, since this is true for each x0 such
that |x0| = R0 + R, one infers that

v∞(x) ≥ εψR(0) for all x ∈ R
N such that |x| ≥ R0 +R.

Hence

inf
RN\BR0+R

v∞ > 0.

Since v∞ is continuous and positive in Ω, it follows that

m = inf
Ω

v∞ > 0.

Ifm is reached at some point x ∈ Ω, the strong elliptic maximum principle and Hopf
lemma yield m ≥ 1, since f > 0 in (0, 1). Then v∞ ≡ 1 (remember that v∞ ≤ 1 in
Ω). If m is not attained, there exists a sequence of points (xn)n∈N in Ω such that
|xn| → +∞ and v∞(xn) → m as n → +∞. The functions wn(x) = v∞(x + xn)
then converge locally uniformly in RN , up to extraction of some subsequence, to a
classical solution w∞ of ∆w∞ + f(w∞) = 0 in R

N with m = w∞(0) ≤ w∞ ≤ 1 in
RN . One concludes as above that m = 1.

Therefore, v∞ ≡ 1 in Ω. Since u(1 + t, x) ≥ v(t, x) for all t ≥ 1 and x ∈ Ω, it
follows that

lim inf
t→+∞

min
x∈K

u(t, x) ≥ 1,

for all compact subset K ⊂ Ω. Together with (3.1), this completes the proof of
Lemma 3.1. �
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Lemma 3.2. Let u(t, x) be a solution of (1.6) with Ω = RN and with an initial
condition u0 �≡ 0 which is nonnegative, continuous and bounded. Let g : R+ → R

be of class C1 and such that g(0) = g(1) = 0, g′(0) > 0, g > 0 on (0, 1) and g < 0

on (1,+∞). Then, for all 0 ≤ c < 2
√
g′(0) and for all e ∈ RN with |e| = 1,

u(t, x+ ct e) → 1

locally uniformly in x ∈ RN as t → +∞.

This lemma could actually follow from a result by Aronson and Weinberger [1],
which was based on the construction of subsolutions involving planar travelling
fronts, for the parabolic problem. We present a simpler proof here, which is mainly
based on elliptic arguments.

Notice also that the case c = 0 is included in Lemma 3.1.

Proof of Lemma 3.2. As in Lemma 3.1, one knows that

lim sup
t→+∞

(
sup
x∈RN

u(t, x)

)
≤ 1.

Let e ∈ RN be fixed such that |e| = 1 and let 0 ≤ c < 2
√
g′(0). Let R > 0

be large enough so that λR + c2/4 < g′(0), where (λR, ψR) is the pair of the first
eigenvalue and the first eigenfunction of problem (3.2) in the ball BR. Since u is
continuous and u(t, x) > 0 for all t > 0 and x ∈ RN , one can choose ε > 0 small
enough so that

∀ x ∈ BR, u(1, x+ ce) ≥ εe−ce·x/2ψR(x) =: w0(x).

Decreasing ε > 0 if need be, one can assume that w0 ≤ 1 in BR and

∆w0 + ce · ∇w0 + g(w0) = −
(
λR +

c2

4

)
w0 + g(w0) ≥ 0 in BR.

Since the function (t, x) �→ v(t, x) := u(t, x+ ct e) satisfies the equation

vt = ∆v + ce · ∇v + g(v),

it then follows that v(1 + t, x) ≥ w(t, x) for all t ≥ 0 and x ∈ RN , where w
satisfies the same equation as v with initial condition w(0, x) = w0(x) if x ∈ BR

and w(0, x) = 0 if |x| ≥ R.
Furthermore, from the choice of ε, w(t, x) is nondecreasing in t for all x ∈ R

N

and converges as t → +∞ locally uniformly in x ∈ RN to a classical solution w∞
of

∆w∞ + ce · ∇w∞ + g(w∞) = 0 in R
N

such that 0 ≤ w∞ ≤ 1 in R
N and w∞ ≥ w0 in BR. It follows from Proposition 1.14

in [7] that w∞ ≡ 1.
Therefore, lim inft→+∞ minx∈K u(t, x+ ct e) ≥ 1 for all compact subsets K ⊂

RN . The proof of Lemma 3.2 is thus complete. �

Proof of Theorem 1.9. As already underlined, one only has to prove formula (1.11).
Let u solve (1.6) with an initial condition u0 ∈ E . Under the assumptions of
Theorem 1.9, the exterior domain Ω satisfies the extension property, whence

max
|x|≥ct, x∈Ω

u(t, x) → 0 as t → +∞,

as soon as c > 2
√
f ′(0).
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On the other hand, one easily obtains as usual that

lim sup
t→+∞

sup
x∈Ω

u(t, x) ≤ 1.

Therefore, one only has to prove that lim inft→+∞ min|x|≤ct, x∈Ω u(t, x) ≥ 1 if

0 ≤ c < 2
√
f ′(0).

Let c be fixed such that 0 ≤ c < 2
√
f ′(0) and let ε ∈ (0, 1) be fixed. It follows

from Lemma 3.1 that there exists t0 > 0 such that

∀ t ≥ t0, ∀ x ∈ ∂Ω, u(t, x) ≥ 1− ε.

Now let g be a C1 function such that g ≤ f in [0,+∞), g(0) = g(1−ε) = 0, g > 0
in (0, 1 − ε), g < 0 in (1 − ε,+∞) and g′(0) = f ′(0). Let v0 be a continuous and
compactly supported function defined in R

N such that 0 ≤ v0 ≤ 1− ε and v0 �≡ 0.
Assume furthermore that v0 is radially symmetric, nonincreasing with respect to
r = |x| and that u(t0, x) ≥ v0(x) for all x ∈ Ω. Lastly, let v(t, x) be the solution of
(1.6) in RN , with nonlinearity g instead of f , and initial condition v0.

It follows by construction of g that v(t, x) ≤ 1 − ε for all t ≥ 0 and x ∈ R
N .

Therefore, u(t + t0, x) ≥ 1 − ε ≥ v(t, x) for all t ≥ 0 and x ∈ ∂Ω. The above
assumptions on g and v0 then yield that

∀ t ≥ 0, ∀ x ∈ Ω, u(t+ t0, x) ≥ v(t, x).

Thus,

lim inf
t→+∞

min
|x|≤ct, x∈Ω

u(t, x) ≥ lim inf
t→+∞

min
|x|≤ct+ct0, x∈Ω

v(t, x)

≥ lim inf
t→+∞

min
|x|≤ct+ct0, x∈RN

v(t, x).

On the other hand, v stays radially symmetric in RN and nonincreasing with
respect to r = |x| for all time t ≥ 0. Therefore,

lim inf
t→+∞

min
|x|≤ct, x∈Ω

u(t, x) ≥ lim inf
t→+∞

v(t, c(t+ t0)e)

for any given direction e ∈ S
N−1. However,

lim inf
t→+∞

v(t, c(t+ t0)e) = 1− ε

by applying the conclusion of Lemma 3.2 to the function g (remember that 0 ≤ c <

2
√
f ′(0) = 2

√
g′(0) from the choice of g).

Since ε ∈ (0, 1) was arbitrary, one concludes that

lim inf
t→+∞

min
|x|≤ct, x∈Ω

u(t, x) ≥ 1.

Then, we may conclude that

lim
t→+∞

max
|x|≤ct, x∈Ω

|u(t, x)− 1| = 0

for all c ∈ [0, 2
√
f ′(0)), and the proof of Theorem 1.9 is complete. �

The same type of argument as above gives a lower bound for the spreading speeds
w∗(e, u0) and w∗(e, z, u0) in a domain Ω containing a semi-infinite cylinder in the
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direction e, with large enough section. Namely, let us turn to the

Proof of Proposition 1.11. Fix ε ∈ (0, 2
√
f ′(0)] and R0 > 0 large enough so that

∀ R ≥ R0, λR +
(2
√
f ′(0)− ε)2

4
< f ′(0),

where (λR, ψR) is the pair of the first eigenvalue and the first eigenfunction of
problem (3.2) in the ball BR. Assume now that Ω satisfies (1.12) for some A ∈ R,
x0 ∈ RN and R > R0. Fix any R′ such that R0 ≤ R′ < R and set

z0 = x0 − (x0 · e)e+ (A+ 1 +R′)e.

The assumption (1.12) implies that

∀ s ≥ 0, Ω ⊃ B(z0 + se,R′).

As in the proof of Lemma 3.2, there exists η > 0 small enough so that

∀ x ∈ BR′ , u(1, x+ z0) ≥ ηe−(2
√

f ′(0)−ε)e·x/2ψR′(x) =: w0(x)

and w0 ≤ 1 in BR′ . From the choice of R0, the function w0 is a subsolution of

∆w0 + (2
√
f ′(0)− ε)e · ∇w0 + f(w0) ≥ 0 in BR′ .

The function v(t, x) = u
(
t+ 1, x+ z0 + (2

√
f ′(0)− ε)te

)
satisfies

vt = ∆v + (2
√
f ′(0)− ε)e · ∇v + f(v),

in particular for all t ≥ 0 and x ∈ BR′ . Furthermore, v(t, x) ≥ 0 for all x ∈ ∂BR′ .
It follows from the maximum principle that

v(t, x) ≥ w(t, x) for all t ≥ 0 and for all x ∈ BR′ ,

where w solves the same equation as v in BR′ , with initial condition w(0, x) = w0(x)
in BR′ and boundary condition w(t, x) = 0 for all t ≥ 0 and x ∈ ∂BR′ . Furthermore,
0 ≤ w(t, x) ≤ 1 for all t ≥ 0 and x ∈ BR′ , and w is nondecreasing in t for all x ∈ BR′ .
Standard parabolic estimates imply that w(t, x) → w∞(x) as x → +∞, where w∞
satisfies the corresponding elliptic equation and w∞(x) ≥ w0(x) for all x ∈ BR′ .

As a consequence,

∀ x ∈ BR′ , lim inf
t→+∞

u
(
t+ 1, x+ z0 + (2

√
f ′(0)− ε)te

)
≥ w∞(x) > 0.

Thus, w∗(e, z, u0) ≥ 2
√
f ′(0) − ε for all u0 ∈ E and z ∈ RN such that |z − z0 −

((z − z0) · e)e| < R′. Since this is true for all R′ ∈ [R0, R), one concludes that

w∗(e, z, u0) ≥ 2
√
f ′(0)− ε

for all u0 ∈ E and z ∈ RN such that |z − z0 − ((z − z0) · e)e| < R.
Together with formula (1.7) of Proposition 1.5, this completes the proof of (1.13).

�
Remark 3.3. The above arguments imply that if

Ω ⊃ {x ∈ R
N , x · e > A, x · e′ > B}

for some (A,B) ∈ R2 and e′ ∈ SN−1 with e′ · e = 0, then, for all ε > 0, there exists

R0 > 0 such that w∗(e, z, u0) ≥ 2
√
f ′(0)− ε for all u0 ∈ E and

z ∈
⋃

R≥R0, z0∈RN , z0·e′>B+R

B(z0, R).
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Therefore, w∗(e, z, u0) ≥ 2
√
f ′(0) for all u0 ∈ E and z such that z · e′ > B. This

result corresponds to Corollary 1.12.

4. Domains with zero or infinite spreading speeds,

or spreading speeds depending on z

This section is devoted to the construction of some particular domains for which
the spreading speeds may be zero, infinite, or may depend on the position z. All
these constructions rely on estimates on the linear heat equation (see formula (2.19)
in Proposition 2.5).

4.1. Domains for which w∗(e, z, u0) depends on z.

End of the proof of Proposition 1.5. Up to translation and rotation, one can as-
sume, say, that e = (1, 0, . . . , 0) and z = (0, 2, 0, . . . , 0).

Let (an)n∈N be a sequence of positive real numbers such that

an
n

→ +∞ as n → +∞.

Let Γ be the subset of R2 defined by

Γ = {(x1, 0), x1 ≥ 0} ∪
⋃

n∈N∗

{n} × [0, an].

Let Ω̃ be any open subset of R2 such that

Γ ⊂ Ω̃ ⊂
{
x ∈ R

2, d(x,Γ) <
1

3

}

and such that Ω2 := R
2\Ω̃ is connected, locally C2, and satisfies the extension

property defined in Section 1. Here, d(y, E) denotes the euclidean distance of a
point y ∈ Rm to a subset E ⊂ Rm.

We then set Ω = Ω2 if N = 2 (see Figure 1) and Ω = Ω2 × RN−2 if N ≥ 3. The
open set Ω is clearly strongly unbounded in the direction e.4 But such a domain
does not satisfy the assumptions of Theorem 1.6 (more precisely, Ω does not satisfy
Hypothesis Hy,y′ , for any y and y′ such that y2 > 1/3 > −1/3 > y′2).

Furthermore,

∀ u0 ∈ E , w∗(e, u0) ≤ 2
√
f ′(0)

from Theorem 1.8. On the other hand, since Ω ⊃ {x ∈ RN , x2 < −1/3}, Corol-
lary 1.12 implies that w∗(e, u0) ≥ 2

√
f ′(0) and w∗(e, z′, u0) ≥ 2

√
f ′(0) for all

u0 ∈ E and z′ ∈ RN such that z′2 < −1/3. Hence,

w∗(e, u0) = w∗(e, z′, u0) = 2
√
f ′(0)

for all u0 ∈ E and z′ ∈ R
N such that z′2 < −1/3.

Remember that z = (0, 2, 0, . . . , 0). Let γ > 0 be any fixed positive real number
and let u0 be in E . From the construction of Ω, one has that

∀ s ≥ 0, B(z + se, 1) ∩ Ω �= ∅.

4This domain was suggested to us by S. Luckhaus. Its complement, RN\Ω, has the shape of
an infinite comb with larger and larger teeth.
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Figure 1. An infinite comb

Let C0 > 4 be given. From Proposition 2.5 and arguing as in the proof of Theo-
rem 1.8, there are some positive constants C and δ such that

0 ≤ u(t, x) ≤ ef
′(0)t‖u0‖L∞(Ω)

∫
supp(u0)

C(1 + (δt)−N/2) exp

[
−dΩ(y, x)

2

C0t

]
dy

for all t > 0 and x ∈ Ω. Remember that supp(u0) denotes the support of u0. Since
supp(u0) is compact, it follows from the construction of Ω (especially the fact that
an/n → +∞ as n → +∞) that

inf
y ∈ supp(u0), s≥γt, x∈B(z+se,1)∩Ω

dΩ(y, x)

t
→ +∞ as t → +∞.

Thus, for all β > 0, there is t0 > 0 such that

0 ≤ u(t, x) ≤ ef
′(0)t‖u0‖L∞(Ω)C(1 + (δt)−N/2)| supp(u0)| × e−βt

for all t ≥ t0, s ≥ γt and x ∈ B(z + se, 1) ∩ Ω. Therefore,

lim
t→+∞

[
sup

s≥γt, x∈B(z+se,1)∩Ω

u(t, x)

]
= 0.

Since this is true for all γ > 0, one concludes that

w∗(e, z, u0) = 0.

Actually, the same type of argument implies that

w∗(e, z′, u0) = 0

for all u0 ∈ E and z′ ∈ RN such that z′2 > 1/2 (by changing the radius 1 to 1/2+ ε
for some small ε = ε(z′) > 0). �
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4.2. Domains with zero spreading speeds.

Proof of Theorem 1.13, part a). Let us define the curve

Γ = {(t cos t, t sin t), t ≥ 0}
and let Ω be a locally C2 open connected subset of R2 satisfying the extension
property and such that, say, Ω\B2π = {x, d(x,Γ) < 1}\B2π. Such a domain Ω is
like a spiral. It is clear that Ω is strongly unbounded in every unit direction e of
R2.

Let u0 �≡ 0 be a nonnegative, continuous and compactly supported function in
Ω. Let C0 > 4, e ∈ S1 be given, and let R > 0 be such that Ω ∩ B(se,R) �= ∅ for
all s ≥ 0. From Proposition 2.5 and arguing as in the proof of Theorem 1.8, there
are some positive constants C and δ such that

0 ≤ u(t, x) ≤ ef
′(0)t‖u0‖L∞(Ω)

∫
supp(u0)

C(1 + (δt)−1) exp

[
−dΩ(y, x)

2

C0t

]
dy

for all t > 0 and x ∈ Ω. Fix any γ > 0 and A ≥ R. For all s ≥ 0 and for all t > 0,
one has

0 ≤ max
x∈B(se,A)∩Ω

u(t, x) ≤ C‖u0‖L∞(Ω)(1 + δ−1t−1)ef
′(0)t

∫
supp(u0)

exp

[
−
r̃2y,s
C0t

]
dy,

where

r̃y,s = min
z∈B(se,A)∩Ω

dΩ(y, z).

But, owing to the definition of Ω, there exist η > 0 and t0 > 0 such that

∀ t ≥ t0, ∀ s ≥ γt, ∀ y ∈ supp(u0), r̃y,s ≥ ηt2.

Thus, for all t ≥ t0,

0 ≤ sup
s≥γt, x∈B(se,A)∩Ω

u(t, x)

≤ C‖u0‖L∞(Ω)(1 + δ−1t−1)ef
′(0)t|supp(u0)| × e−η2t3/C0 → 0

as t → +∞. �

4.3. Domains with infinite spreading speeds. The proof of part b) of The-
orem 1.13 is based on Lemmas 4.1 and 4.2 below. In the remaining part of this
section, we fix N ≥ 2 and we call (x, x′) the coordinates in R

N , where x = x1 and

x′ = (x2, . . . , xN ). Let us set r′ = |x′| =
√
x2
2 + · · ·+ x2

N . Let h : R → R be the
function defined for all s ∈ R by

h(s) = e−es+s.

Set

Ω̃ = {(x, x′) ∈ R
N , x > A, 0 ≤ r′ < h(x)},

where A > 0 is a positive real number to be chosen later, and let Ω be an open
connected and locally C2 domain such that

Ω̃ ⊂ Ω ⊂ Ω̃ ∪ {A− 1 ≤ x ≤ A, 0 ≤ r′ < 1}.
Such a domain Ω has the shape of an infinite cusp (see Figure 2), and it obviously
does not satisfy the extension property defined in Section 1.
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Figure 2. An infinite cusp

Lemma 4.1. Under the above notation, say that

φ(x, x′) = φ(x, r′) = cos r′ − e−x cos(
√
2r′)

for all (x, x′) ∈ RN . Then there exists A > 0 large enough such that{
∆φ+ φ ≤ 0 in Ω̃,

ν · ∇φ ≥ 0 on ∂Ω̃ ∩ {x > A}
and 1/2 ≤ φ ≤ 1 in Ω.

Proof. A straighforward calculation gives us the fact that the function φ is of class
C2 in RN and that

∆φ+ φ =
N − 2

r′
(− sin r′ +

√
2e−x sin(

√
2r′))

if r′ > 0. Therefore, ∆φ+ φ ≤ 0 in Ω̃ for A large enough.
On the other hand, for (x, x′) ∈ ∂Ω̃ ∩ {x > A}, one has r′ = h(x) and

ν · ∇φ(x, x′)

=
1√

h′(x)2 + 1

(
−h′(x)e−x cos(

√
2h(x))− sinh(x) +

√
2e−x sin(

√
2h(x))

)

=
h(x)√

h′(x)2 + 1

(
e−x +O(h2(x))

)
≥ 0 for x large enough.

Lastly, the condition 1/2 ≤ φ ≤ 1 in Ω immediately holds if A is large enough. This
completes the proof of Lemma 4.1. �

The following lemma provides some lower estimates for the heat kernel in such
domains Ω.

Lemma 4.2. Under the assumptions of Lemma 4.1, let p(t, w, z) denote the heat
kernel in Ω with Neumann boundary conditions on ∂Ω. Then there exists a time
T > 0 such that, for all compact subsets K ⊂ Ω,

inf
t≥T, y∈K, z∈Ω

p(t, y, z) > 0.

Proof. Let us first fix T0 > 0 such that

e−T0 ≤ 1/4.

Let K be a compact subset of Ω. From the strong maximum principle and by
continuity there exists η > 0 such that, say,

(4.1) ∀ 1 ≤ t ≤ 1 + T0, ∀ y ∈ K, ∀ z = (x, x′) ∈ Ω ∩ {x ≤ A}, p(t, y, z) ≥ η.
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Let η be as above, and let y be any given point in K. Let ε > 0 and β > 0 be
two arbitrary positive real numbers, and let u be the function defined for all t ≥ 0
and z = (x, x′) ∈ Ω by

u(t, z) = p(1 + t, y, z) + εeβx.

One immediately checks that

ut −∆u+ β2u = β2p(1 + t, y, z) > 0

for all t ≥ 0 and z ∈ Ω. Furthermore, for all z = (x, x′) ∈ ∂Ω̃ ∩ {x > A} one has

ν · ∇u = − εβeβxh′(x)√
h′(x)2 + 1

≥ 0.

Lastly, u(t, ·) ≥ η on ∂Ω̃ ∩ {x = A} for all 0 ≤ t ≤ T0, because of (4.1).
Now call u the function defined for all t ≥ 0 and z ∈ Ω by

u(t, z) = η − 2ηφ(z)e−(1+β2)t − β2ηt.

From Lemma 4.1, the function u satisfies

ut −∆u+ β2u = 2η(∆φ+ φ)e−(1+β2)t − β4ηt ≤ 0

for all z ∈ Ω̃ and t ≥ 0. Furthermore,

ν · ∇u = −2η ν · ∇φ e−(1+β2)t ≤ 0 on ∂Ω̃ ∩ {x > A}
from Lemma 4.1, and u(t, ·) ≤ η in Ω for all t ≥ 0. Lastly, since φ ≥ 1/2 in Ω, one
has that

u(0, ·) ≥ ε > 0 ≥ u(0, ·) in Ω̃.

The parabolic maximum principle yields u(t, z) ≥ u(t, z) for all 0 ≤ t ≤ T0 and

z ∈ Ω̃. In other words,

∀ 0 ≤ t ≤ T0, ∀ z ∈ Ω̃, p(1 + t, y, z) + εeβx ≥ η − 2ηφ(z)e−(1+β2)t − β2ηt.

Since ε > 0 and β > 0 were arbitrary, it follows that

∀ 0 ≤ t ≤ T0, ∀ z ∈ Ω̃, p(1 + t, y, z) ≥ η − 2ηφ(z)e−t.

Since φ ≤ 1 in Ω, one has φe−T0 ≤ e−T0 ≤ 1/4 from the choice of T0. Therefore,

∀ z ∈ Ω̃, p(1 + T0, y, z) ≥ η/2.

From (4.1), one concludes that p(1 + T0, y, z) ≥ η/2 for all z ∈ Ω. As a conse-
quence,

p(t, y, z) ≥ η/2

for all t ≥ T := 1 + T0 and for all z ∈ Ω. Since y ∈ K was arbitrary, the proof of
Lemma 4.2 is complete (notice that T does not depend on K). �

Let us now turn to the

Proof of Theorem 1.13, part b). Let Ω be as above and such that the conclusion
of Lemma 4.1 holds. Let e = e1 = (1, 0, . . . , 0). It is clear that Ω is strongly
unbounded in the direction e. Let u0 �≡ 0 be a continuous, nonnegative and com-
pactly supported function in Ω, and let u(t, x) be the solution of (1.6) with initial
condition u0.
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Let us first observe that

∀ t ≥ 0, ∀x ∈ Ω, u(t, x) ≥ v(t, x),

where v is the solution of (1.6) with initial condition v0 = min(u0, 1). Since 0 ≤
v(t, x) ≤ 1 for all t ≥ 0 and x ∈ Ω, and since f ≥ 0 in [0, 1], one obtains

∀ t ≥ 0, ∀ x ∈ Ω, v(t, x) ≥ V (t, x),

where V solves the heat equation Vt = ∆V with Neumann boundary conditions on
∂Ω and initial condition v0.

Therefore, under the notation of Lemma 4.2, one has

∀ t ≥ 0, ∀ x ∈ Ω, u(t, x) ≥ V (t, x) =

∫
supp(v0)

p(t, y, x)v0(y)dy.

Since supp(v0)(= supp(u0)) is a compact subset of Ω, Lemma 4.2 implies that there
exist T > 0 and δ > 0 such that

∀ t ≥ T, ∀ y ∈ supp(u0), ∀ x ∈ Ω, p(t, y, x) ≥ δ.

Hence,

u(t, x) ≥ ε := δ

∫
supp(u0)

v0(y)dy > 0

for all t ≥ T and x ∈ Ω.
As a consequence, u(t+ T, x) ≥ ζ(t) > 0 for all t ≥ 0 and x ∈ Ω, where ζ solves

ζ̇ = f(ζ) with ζ(0) = ε > 0. Since ζ(t) → 1 as t → +∞ (because of the profile of
f), one obtains

lim inf
t→+∞

inf
x∈Ω

u(t, x) ≥ 1.

On the other hand, u(t, x) ≤ ξ(t) for all t ≥ 0 and x ∈ Ω, where ξ solves ξ̇ = f(ξ)
and ξ(0) = maxΩ u0 ∈ (0,+∞). Since ξ(t) → 1 as t → +∞, one obtains as usual
that

lim sup
t→+∞

sup
x∈Ω

u(t, x) ≤ 1.

As a conclusion, u(t, x) → 1 as t → +∞ uniformly with respect to x ∈ Ω.
Owing to Definitions 1.2 and 1.3, it follows that w∗(e, z, u0) = w∗(e, u0) = +∞

for all z ∈ RN and u0 ∈ E . This completes the proof of Theorem 1.13, part b). �
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[14] M. Freidlin, J. Gärtner, On the propagation of concentration waves in periodic and random
media, Sov. Math. Dokl. 20 (1979), pp. 1282-1286. MR553200 (81d:80005)

[15] T. Gallay, Local stability of critical fronts in nonlinear parabolic pde’s, Nonlinearity 7 (1994),
pp. 741-764. MR1275528 (95c:35122)

[16] A. Grigor’yan, Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Diff.
Geom. 45 (1997), pp. 33-52. MR1443330 (98g:58167)

[17] M. Gruber, Harnack inequalities for solutions of general second order parabolic equations and
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