Measure conjugacy invariants for actions of countable sofic groups
HTML articles powered by AMS MathViewer
- by Lewis Bowen;
- J. Amer. Math. Soc. 23 (2010), 217-245
- DOI: https://doi.org/10.1090/S0894-0347-09-00637-7
- Published electronically: April 29, 2009
- PDF | Request permission
Abstract:
Sofic groups were defined implicitly by Gromov and explicitly by Weiss. All residually finite groups (and hence all linear groups) are sofic. The purpose of this paper is to introduce, for every countable sofic group $G$, a family of measure-conjugacy invariants for measure-preserving $G$-actions on probability spaces. These invariants generalize Kolmogorov-Sinai entropy for actions of amenable groups. They are computed exactly for Bernoulli shifts over $G$, leading to a complete classification of Bernoulli systems up to measure-conjugacy for many groups, including all countable linear groups. Recent rigidity results of Y. Kida and S. Popa are utilized to classify Bernoulli shifts over mapping class groups and property (T) groups up to orbit equivalence and von Neumann equivalence, respectively.References
- Lewis Bowen, Periodicity and circle packings of the hyperbolic plane, Geom. Dedicata 102 (2003), 213–236. MR 2026846, DOI 10.1023/B:GEOM.0000006580.47816.e9
- L. Bowen. A measure-conjugacy invariant for free group actions. To appear in the Annals of Mathematics.
- L. Bowen. Weak isomorphisms between Bernoulli shifts. preprint. arXiv:0812.2718
- L. Bowen. The ergodic theory of free group actions: entropy and the $f$-invariant. preprint. arXiv:0902.0174
- A. Connes, J. Feldman, and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems 1 (1981), no. 4, 431–450 (1982). MR 662736, DOI 10.1017/s014338570000136x
- Alain Connes, Sur la classification des facteurs de type $\textrm {II}$, C. R. Acad. Sci. Paris Sér. A-B 281 (1975), no. 1, Aii, A13–A15 (French, with English summary). MR 377534
- A. Connes, Classification of injective factors. Cases $II_{1},$ $II_{\infty },$ $III_{\lambda },$ $\lambda \not =1$, Ann. of Math. (2) 104 (1976), no. 1, 73–115. MR 454659, DOI 10.2307/1971057
- Pierre de la Harpe and Alain Valette, La propriété $(T)$ de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Astérisque 175 (1989), 158 (French, with English summary). With an appendix by M. Burger. MR 1023471
- H. A. Dye, On groups of measure preserving transformations. I, Amer. J. Math. 81 (1959), 119–159. MR 131516, DOI 10.2307/2372852
- H. A. Dye, On groups of measure preserving transformations. II, Amer. J. Math. 85 (1963), 551–576. MR 158048, DOI 10.2307/2373108
- Gábor Elek and Endre Szabó, Hyperlinearity, essentially free actions and $L^2$-invariants. The sofic property, Math. Ann. 332 (2005), no. 2, 421–441. MR 2178069, DOI 10.1007/s00208-005-0640-8
- Gábor Elek and Endre Szabó, On sofic groups, J. Group Theory 9 (2006), no. 2, 161–171. MR 2220572, DOI 10.1515/JGT.2006.011
- Eli Glasner, Ergodic theory via joinings, Mathematical Surveys and Monographs, vol. 101, American Mathematical Society, Providence, RI, 2003. MR 1958753, DOI 10.1090/surv/101
- Edna K. Grossman, On the residual finiteness of certain mapping class groups, J. London Math. Soc. (2) 9 (1974/75), 160–164. MR 405423, DOI 10.1112/jlms/s2-9.1.160
- M. Gromov, Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc. (JEMS) 1 (1999), no. 2, 109–197. MR 1694588, DOI 10.1007/PL00011162
- N. V. Ivanov, Algebraic properties of mapping class groups of surfaces, Geometric and algebraic topology, Banach Center Publ., vol. 18, PWN, Warsaw, 1986, pp. 15–35. MR 925854
- Vaughan F. R. Jones, von Neumann algebras in mathematics and physics, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 121–138. MR 1159209
- Yoshikata Kida, Orbit equivalence rigidity for ergodic actions of the mapping class group, Geom. Dedicata 131 (2008), 99–109. MR 2369194, DOI 10.1007/s10711-007-9219-8
- J. C. Kieffer, A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space, Ann. Probability 3 (1975), no. 6, 1031–1037. MR 393422, DOI 10.1214/aop/1176996230
- A. N. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces, Dokl. Akad. Nauk SSSR (N.S.) 119 (1958), 861–864 (Russian). MR 103254
- A. N. Kolmogorov, Entropy per unit time as a metric invariant of automorphisms, Dokl. Akad. Nauk SSSR 124 (1959), 754–755 (Russian). MR 103255
- A. Malcev, On isomorphic matrix representations of infinite groups, Rec. Math. [Mat. Sbornik] N.S. 8(50) (1940), 405–422 (Russian, with English summary). MR 3420
- G. A. Margulis, Finitely-additive invariant measures on Euclidean spaces, Ergodic Theory Dynam. Systems 2 (1982), no. 3-4, 383–396 (1983). MR 721730, DOI 10.1017/S014338570000167X
- Dusa McDuff, A countable infinity of $\Pi _{1}$ factors, Ann. of Math. (2) 90 (1969), 361–371. MR 256183, DOI 10.2307/1970729
- F. J. Murray and J. Von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), no. 1, 116–229. MR 1503275, DOI 10.2307/1968693
- F. J. Murray and J. von Neumann, On rings of operators. IV, Ann. of Math. (2) 44 (1943), 716–808. MR 9096, DOI 10.2307/1969107
- A. Yu. Ol′shanskiĭ, Geometry of defining relations in groups, Mathematics and its Applications (Soviet Series), vol. 70, Kluwer Academic Publishers Group, Dordrecht, 1991. Translated from the 1989 Russian original by Yu. A. Bakhturin. MR 1191619, DOI 10.1007/978-94-011-3618-1
- Donald Ornstein, Bernoulli shifts with the same entropy are isomorphic, Advances in Math. 4 (1970), 337–352. MR 257322, DOI 10.1016/0001-8708(70)90029-0
- Donald Ornstein, Two Bernoulli shifts with infinite entropy are isomorphic, Advances in Math. 5 (1970), 339–348 (1970). MR 274716, DOI 10.1016/0001-8708(70)90008-3
- Donald S. Ornstein and Benjamin Weiss, Ergodic theory of amenable group actions. I. The Rohlin lemma, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 1, 161–164. MR 551753, DOI 10.1090/S0273-0979-1980-14702-3
- Donald S. Ornstein and Benjamin Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math. 48 (1987), 1–141. MR 910005, DOI 10.1007/BF02790325
- William Parry, Entropy and generators in ergodic theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 262464
- Vladimir G. Pestov, Hyperlinear and sofic groups: a brief guide, Bull. Symbolic Logic 14 (2008), no. 4, 449–480. MR 2460675, DOI 10.2178/bsl/1231081461
- Sorin Popa, Strong rigidity of $\rm II_1$ factors arising from malleable actions of $w$-rigid groups. II, Invent. Math. 165 (2006), no. 2, 409–451. MR 2231962, DOI 10.1007/s00222-006-0502-3
- Sorin Popa, Deformation and rigidity for group actions and von Neumann algebras, International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, pp. 445–477. MR 2334200, DOI 10.4171/022-1/18
- Sorin Popa, On the superrigidity of malleable actions with spectral gap, J. Amer. Math. Soc. 21 (2008), no. 4, 981–1000. MR 2425177, DOI 10.1090/S0894-0347-07-00578-4
- J. Schwartz, Two finite, non-hyperfinite, non-isomorphic factors, Comm. Pure Appl. Math. 16 (1963), 19–26. MR 149322, DOI 10.1002/cpa.3160160104
- I. M. Singer, Automorphisms of finite factors, Amer. J. Math. 77 (1955), 117–133. MR 66567, DOI 10.2307/2372424
- Ja. Sinaĭ, On the concept of entropy for a dynamic system, Dokl. Akad. Nauk SSSR 124 (1959), 768–771 (Russian). MR 103256
- A. M. Stepin, Bernoulli shifts on groups, Dokl. Akad. Nauk SSSR 223 (1975), no. 2, 300–302 (Russian). MR 409769
- J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250–270. MR 286898, DOI 10.1016/0021-8693(72)90058-0
- Benjamin Weiss, Sofic groups and dynamical systems, Sankhyā Ser. A 62 (2000), no. 3, 350–359. Ergodic theory and harmonic analysis (Mumbai, 1999). MR 1803462
Bibliographic Information
- Lewis Bowen
- Affiliation: Department of Mathematics, University of Hawaii, 2565 McCarthy Mall, Keller 409, Honolulu, HI 96822
- MR Author ID: 671629
- Email: lpbowen@math.hawaii.edu
- Received by editor(s): August 20, 2008
- Published electronically: April 29, 2009
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 23 (2010), 217-245
- MSC (2000): Primary 37A35
- DOI: https://doi.org/10.1090/S0894-0347-09-00637-7
- MathSciNet review: 2552252