The dimension of the Torelli group
HTML articles powered by AMS MathViewer
- by Mladen Bestvina, Kai-Uwe Bux and Dan Margalit;
- J. Amer. Math. Soc. 23 (2010), 61-105
- DOI: https://doi.org/10.1090/S0894-0347-09-00643-2
- Published electronically: July 10, 2009
- PDF | Request permission
Abstract:
We prove that the cohomological dimension of the Torelli group for a closed, connected, orientable surface of genus $g \geq 2$ is equal to $3g-5$. This answers a question of Mess, who proved the lower bound and settled the case of $g=2$. We also find the cohomological dimension of the Johnson kernel (the subgroup of the Torelli group generated by Dehn twists about separating curves) to be $2g-3$. For $g \geq 2$, we prove that the top dimensional homology of the Torelli group is infinitely generated. Finally, we give a new proof of the theorem of Mess that gives a precise description of the Torelli group in genus 2. The main tool is a new contractible complex, called the “complex of minimizing cycles”, on which the Torelli group acts.References
- Rob Kirby (ed.), Problems in low-dimensional topology, Geometric topology (Athens, GA, 1993) AMS/IP Stud. Adv. Math., vol. 2, Amer. Math. Soc., Providence, RI, 1997, pp. 35–473. MR 1470751, DOI 10.1090/amsip/002.2/02
- Toshiyuki Akita, Homological infiniteness of Torelli groups, Topology 40 (2001), no. 2, 213–221. MR 1808217, DOI 10.1016/S0040-9383(99)00050-6
- Mladen Bestvina, Kai-Uwe Bux, and Dan Margalit, Dimension of the Torelli group for $\textrm {Out}(F_n)$, Invent. Math. 170 (2007), no. 1, 1–32. MR 2336078, DOI 10.1007/s00222-007-0055-0
- Robert Bieri, Groupes à dualité de Poincaré, C. R. Acad. Sci. Paris Sér. A-B 273 (1971), A6–A8 (French). MR 284509
- Joan S. Birman, On Siegel’s modular group, Math. Ann. 191 (1971), 59–68. MR 280606, DOI 10.1007/BF01433472
- Joan S. Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1974. MR 375281
- Joan S. Birman, Alex Lubotzky, and John McCarthy, Abelian and solvable subgroups of the mapping class groups, Duke Math. J. 50 (1983), no. 4, 1107–1120. MR 726319, DOI 10.1215/S0012-7094-83-05046-9
- A. Borel and J.-P. Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973), 436–491. MR 387495, DOI 10.1007/BF02566134
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956, DOI 10.1007/978-1-4684-9327-6
- Peter Buser, Geometry and spectra of compact Riemann surfaces, Progress in Mathematics, vol. 106, Birkhäuser Boston, Inc., Boston, MA, 1992. MR 1183224
- Thomas Church. Orbits of curves under the Johnson kernel. In preparation.
- Thomas Church. Personal communication.
- Max Dehn, Papers on group theory and topology, Springer-Verlag, New York, 1987. Translated from the German and with introductions and an appendix by John Stillwell; With an appendix by Otto Schreier. MR 881797, DOI 10.1007/978-1-4612-4668-8
- Samuel Eilenberg and Tudor Ganea, On the Lusternik-Schnirelmann category of abstract groups, Ann. of Math. (2) 65 (1957), 517–518. MR 85510, DOI 10.2307/1970062
- Benson Farb, Some problems on mapping class groups and moduli space, Problems on mapping class groups and related topics, Proc. Sympos. Pure Math., vol. 74, Amer. Math. Soc., Providence, RI, 2006, pp. 11–55. MR 2264130, DOI 10.1090/pspum/074/2264130
- A. T. Fomenko, D. B. Fuchs, and V. L. Gutenmacher, Homotopic topology, Akadémiai Kiadó (Publishing House of the Hungarian Academy of Sciences), Budapest, 1986. Translated from the Russian by K. Mályusz. MR 873943
- Richard Hain, The rational cohomology ring of the moduli space of abelian 3-folds, Math. Res. Lett. 9 (2002), no. 4, 473–491. MR 1928867, DOI 10.4310/MRL.2002.v9.n4.a7
- John L. Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. (2) 121 (1985), no. 2, 215–249. MR 786348, DOI 10.2307/1971172
- John L. Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986), no. 1, 157–176. MR 830043, DOI 10.1007/BF01388737
- Allen Hatcher. Spectral sequences. Preliminary version, available at http://www.math. cornell.edu/$\sim$hatcher/SSAT/SSATpage.html.
- Allen Hatcher. The cyclic cycle complex of a surface. arXiv:0806.0326.
- Allen Hatcher, On triangulations of surfaces, Topology Appl. 40 (1991), no. 2, 189–194. MR 1123262, DOI 10.1016/0166-8641(91)90050-V
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- Y. Imayoshi and M. Taniguchi, An introduction to Teichmüller spaces, Springer-Verlag, Tokyo, 1992. Translated and revised from the Japanese by the authors. MR 1215481, DOI 10.1007/978-4-431-68174-8
- N. V. Ivanov, Complexes of curves and Teichmüller spaces, Mat. Zametki 49 (1991), no. 5, 54–61, 158 (Russian); English transl., Math. Notes 49 (1991), no. 5-6, 479–484. MR 1137173, DOI 10.1007/BF01142643
- Nikolai V. Ivanov, Mapping class groups, Handbook of geometric topology, North-Holland, Amsterdam, 2002, pp. 523–633. MR 1886678
- Dennis Johnson, An abelian quotient of the mapping class group ${\cal I}_{g}$, Math. Ann. 249 (1980), no. 3, 225–242. MR 579103, DOI 10.1007/BF01363897
- Dennis Johnson, Conjugacy relations in subgroups of the mapping class group and a group-theoretic description of the Rochlin invariant, Math. Ann. 249 (1980), no. 3, 243–263. MR 579104, DOI 10.1007/BF01363898
- Dennis Johnson, The structure of the Torelli group. I. A finite set of generators for ${\cal I}$, Ann. of Math. (2) 118 (1983), no. 3, 423–442. MR 727699, DOI 10.2307/2006977
- Dennis Johnson, The structure of the Torelli group. II. A characterization of the group generated by twists on bounding curves, Topology 24 (1985), no. 2, 113–126. MR 793178, DOI 10.1016/0040-9383(85)90049-7
- F. E. A. Johnson and C. T. C. Wall, On groups satisfying Poincaré duality, Ann. of Math. (2) 96 (1972), 592–598. MR 311796, DOI 10.2307/1970827
- John P. Labute, On the descending central series of groups with a single defining relation, J. Algebra 14 (1970), 16–23. MR 251111, DOI 10.1016/0021-8693(70)90130-4
- Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory, 2nd ed., Dover Publications, Inc., Mineola, NY, 2004. Presentations of groups in terms of generators and relations. MR 2109550
- Darryl McCullough and Andy Miller, The genus $2$ Torelli group is not finitely generated, Topology Appl. 22 (1986), no. 1, 43–49. MR 831180, DOI 10.1016/0166-8641(86)90076-3
- Greg McShane and Igor Rivin, A norm on homology of surfaces and counting simple geodesics, Internat. Math. Res. Notices 2 (1995), 61–69. MR 1317643, DOI 10.1155/S1073792895000055
- Geoffrey Mess. Unit tangent bundle subgroups of the mapping class groups. Preprint IHES/M/90/30, 1990.
- Geoffrey Mess, The Torelli groups for genus $2$ and $3$ surfaces, Topology 31 (1992), no. 4, 775–790. MR 1191379, DOI 10.1016/0040-9383(92)90008-6
- Luis Paris and Dale Rolfsen, Geometric subgroups of mapping class groups, J. Reine Angew. Math. 521 (2000), 47–83. MR 1752295, DOI 10.1515/crll.2000.030
- Andrew Putman. The Johnson homomorphism and its kernel. Preprint. arXiv:0904.0467.
- Andrew Putman, Cutting and pasting in the Torelli group, Geom. Topol. 11 (2007), 829–865. MR 2302503, DOI 10.2140/gt.2007.11.829
- Jean-Pierre Serre, Cohomologie des groupes discrets, Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970) Ann. of Math. Stud., No. 70, Princeton Univ. Press, Princeton, NJ, 1971, pp. 77–169 (French). MR 385006
- Jean-Pierre Serre, Trees, Springer-Verlag, Berlin-New York, 1980. Translated from the French by John Stillwell. MR 607504, DOI 10.1007/978-3-642-61856-7
- John R. Stallings, On torsion-free groups with infinitely many ends, Ann. of Math. (2) 88 (1968), 312–334. MR 228573, DOI 10.2307/1970577
- Richard G. Swan, Groups of cohomological dimension one, J. Algebra 12 (1969), 585–610. MR 240177, DOI 10.1016/0021-8693(69)90030-1
- William P. Thurston, A norm for the homology of $3$-manifolds, Mem. Amer. Math. Soc. 59 (1986), no. 339, i–vi and 99–130. MR 823443
- William R. Vautaw, Abelian subgroups of the Torelli group, Algebr. Geom. Topol. 2 (2002), 157–170. MR 1917048, DOI 10.2140/agt.2002.2.157
Bibliographic Information
- Mladen Bestvina
- Affiliation: Department of Mathematics, University of Utah, 155 S 1400 East, Salt Lake City, Utah 84112-0090
- MR Author ID: 36095
- Email: bestvina@math.utah.edu
- Kai-Uwe Bux
- Affiliation: Department of Mathematics, University of Virginia, Kerchof Hall 229, Charlottesville, Virginia 22903-4137
- Email: kb2ue@virginia.edu
- Dan Margalit
- Affiliation: Department of Mathematics, Tufts University, 503 Boston Avenue, Medford, Massachusetts 02155
- MR Author ID: 706322
- Email: dan.margalit@tufts.edu
- Received by editor(s): September 7, 2007
- Published electronically: July 10, 2009
- Additional Notes: The first and third authors gratefully acknowledge support by the National Science Foundation.
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 23 (2010), 61-105
- MSC (2000): Primary 20F34; Secondary 57M07
- DOI: https://doi.org/10.1090/S0894-0347-09-00643-2
- MathSciNet review: 2552249