Actions of $\mathbb {F}_\infty$ whose II$_1$ factors and orbit equivalence relations have prescribed fundamental group
HTML articles powered by AMS MathViewer
- by Sorin Popa and Stefaan Vaes;
- J. Amer. Math. Soc. 23 (2010), 383-403
- DOI: https://doi.org/10.1090/S0894-0347-09-00644-4
- Published electronically: August 26, 2009
- PDF | Request permission
Abstract:
We show that given any subgroup $\mathcal {F}$ of $\mathbb {R}_+$ which is either countable or belongs to a certain “large” class of uncountable subgroups, there exist continuously many free ergodic measure-preserving actions $\sigma _i$ of the free group with infinitely many generators $\mathbb {F}_\infty$ on probability measure spaces $(X_i,\mu _i)$ such that their associated group measure space II$_1$ factors $M_i=\operatorname {L}^\infty (X_i) \rtimes _{\sigma _i} \mathbb {F}_\infty$ and orbit equivalence relations $\mathcal {R}_i=\mathcal {R} (\mathbb {F}_\infty {\overset {}{\curvearrowright }} X_i)$ have fundamental group equal to $\mathcal {F}$ and with $M_i$ (respectively $\mathcal {R}_i$) stably non-isomorphic. Moreover, these actions can be taken so that $\mathcal {R}_i$ has no outer automorphisms and any automorphism of $M_i$ is unitarily conjugate to an automorphism that acts trivially on the subalgebra $\operatorname {L}^\infty (X_i)$ of $M_i$.References
- Jon Aaronson and Mahendra Nadkarni, $L_\infty$ eigenvalues and $L_2$ spectra of nonsingular transformations, Proc. London Math. Soc. (3) 55 (1987), no. 3, 538–570. MR 907232, DOI 10.1112/plms/s3-55.3.538
- M. Burger, Kazhdan constants for $\textrm {SL}(3,\textbf {Z})$, J. Reine Angew. Math. 413 (1991), 36–67. MR 1089795, DOI 10.1515/crll.1991.413.36
- Alain Connes, Une classification des facteurs de type $\textrm {III}$, Ann. Sci. École Norm. Sup. (4) 6 (1973), 133–252 (French). MR 341115
- A. Connes, A factor of type $\textrm {II}_{1}$ with countable fundamental group, J. Operator Theory 4 (1980), no. 1, 151–153. MR 587372
- A. Connes and V. Jones, A $\textrm {II}_{1}$ factor with two nonconjugate Cartan subalgebras, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 2, 211–212. MR 640947, DOI 10.1090/S0273-0979-1982-14981-3
- Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289–324. MR 578656, DOI 10.1090/S0002-9947-1977-0578656-4
- Alex Furman, Orbit equivalence rigidity, Ann. of Math. (2) 150 (1999), no. 3, 1083–1108. MR 1740985, DOI 10.2307/121063
- Alex Furman, Outer automorphism groups of some ergodic equivalence relations, Comment. Math. Helv. 80 (2005), no. 1, 157–196. MR 2130572, DOI 10.4171/CMH/10
- Damien Gaboriau, Invariants $l^2$ de relations d’équivalence et de groupes, Publ. Math. Inst. Hautes Études Sci. 95 (2002), 93–150 (French). MR 1953191, DOI 10.1007/s102400200002
- Damien Gaboriau, Coût des relations d’équivalence et des groupes, Invent. Math. 139 (2000), no. 1, 41–98 (French, with English summary). MR 1728876, DOI 10.1007/s002229900019
- Damien Gaboriau and Sorin Popa, An uncountable family of nonorbit equivalent actions of $\Bbb F_n$, J. Amer. Math. Soc. 18 (2005), no. 3, 547–559. MR 2138136, DOI 10.1090/S0894-0347-05-00480-7
- Sergey L. Gefter, Outer automorphism group of the ergodic equivalence relation generated by translations of dense subgroup of compact group on its homogeneous space, Publ. Res. Inst. Math. Sci. 32 (1996), no. 3, 517–538. MR 1409801, DOI 10.2977/prims/1195162855
- Sergey L. Gefter and Valentin Ya. Golodets, Fundamental groups for ergodic actions and actions with unit fundamental groups, Publ. Res. Inst. Math. Sci. 24 (1988), no. 6, 821–847 (1989). MR 1000122, DOI 10.2977/prims/1195173929
- T. Giordano and G. Skandalis, Krieger factors isomorphic to their tensor square and pure point spectrum flows, J. Funct. Anal. 64 (1985), no. 2, 209–226. MR 812392, DOI 10.1016/0022-1236(85)90075-8
- Greg Hjorth, A lemma for cost attained, Ann. Pure Appl. Logic 143 (2006), no. 1-3, 87–102. MR 2258624, DOI 10.1016/j.apal.2005.05.034
- Bernard Host, Jean-François Méla, and François Parreau, Nonsingular transformations and spectral analysis of measures, Bull. Soc. Math. France 119 (1991), no. 1, 33–90 (English, with French summary). MR 1101939
- Adrian Ioana, Jesse Peterson, and Sorin Popa, Amalgamated free products of weakly rigid factors and calculation of their symmetry groups, Acta Math. 200 (2008), no. 1, 85–153. MR 2386109, DOI 10.1007/s11511-008-0024-5
- Jean-Pierre Kahane and Raphaël Salem, Ensembles parfaits et séries trigonométriques, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1301, Hermann, Paris, 1963 (French). MR 160065
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- Barthélemy Le Gac, Some properties of Borel subgroups of real numbers, Proc. Amer. Math. Soc. 87 (1983), no. 4, 677–680. MR 687640, DOI 10.1090/S0002-9939-1983-0687640-X
- V. Mandrekar, M. Nadkarni, and D. Patil, Singular invariant measures on the line, Studia Math. 35 (1970), 1–13. MR 259069, DOI 10.4064/sm-35-1-1-13
- Nicolas Monod and Yehuda Shalom, Orbit equivalence rigidity and bounded cohomology, Ann. of Math. (2) 164 (2006), no. 3, 825–878. MR 2259246, DOI 10.4007/annals.2006.164.825
- F. J. Murray and J. Von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), no. 1, 116–229. MR 1503275, DOI 10.2307/1968693
- F. J. Murray and J. von Neumann, On rings of operators. IV, Ann. of Math. (2) 44 (1943), 716–808. MR 9096, DOI 10.2307/1969107
- Remus Nicoara, Sorin Popa, and Roman Sasyk, On $\textrm {II}_1$ factors arising from 2-cocycles of $w$-rigid groups, J. Funct. Anal. 242 (2007), no. 1, 230–246. MR 2274021, DOI 10.1016/j.jfa.2006.05.015
- N. Ozawa and S. Popa, On a class of $\mathrm {II}_1$ factors with at most one Cartan subalgebra. Ann. of Math. (2), to appear. arXiv:0706.3623
- S. Popa, Correspondences, INCREST preprint No. 56/1986, www.math.ucla.edu/~popa/ preprints.html.
- Sorin Popa, On a class of type $\textrm {II}_1$ factors with Betti numbers invariants, Ann. of Math. (2) 163 (2006), no. 3, 809–899. MR 2215135, DOI 10.4007/annals.2006.163.809
- Sorin Popa, Strong rigidity of $\rm II_1$ factors arising from malleable actions of $w$-rigid groups. II, Invent. Math. 165 (2006), no. 2, 409–451. MR 2231962, DOI 10.1007/s00222-006-0502-3
- Sorin Popa, On the superrigidity of malleable actions with spectral gap, J. Amer. Math. Soc. 21 (2008), no. 4, 981–1000. MR 2425177, DOI 10.1090/S0894-0347-07-00578-4
- Sorin Popa, Some computations of 1-cohomology groups and construction of non-orbit-equivalent actions, J. Inst. Math. Jussieu 5 (2006), no. 2, 309–332. MR 2225044, DOI 10.1017/S1474748006000016
- Sorin Popa and Dimitri Shlyakhtenko, Universal properties of $L(\textbf {F}_\infty )$ in subfactor theory, Acta Math. 191 (2003), no. 2, 225–257. MR 2051399, DOI 10.1007/BF02392965
- Sorin Popa and Stefaan Vaes, Strong rigidity of generalized Bernoulli actions and computations of their symmetry groups, Adv. Math. 217 (2008), no. 2, 833–872. MR 2370283, DOI 10.1016/j.aim.2007.09.006
- S. Popa and S. Vaes, On the fundamental group of II$_1$ factors and equivalence relations arising from group actions. To appear in Noncommutative geometry, Proceedings of the Conference in honor of A.Connes’ 60th birthday. arXiv:0810.0706
- I. M. Singer, Automorphisms of finite factors, Amer. J. Math. 77 (1955), 117–133. MR 66567, DOI 10.2307/2372424
- Asger Törnquist, Orbit equivalence and actions of $\Bbb F_n$, J. Symbolic Logic 71 (2006), no. 1, 265–282. MR 2210067, DOI 10.2178/jsl/1140641174
- Stefaan Vaes, Explicit computations of all finite index bimodules for a family of $\textrm {II}_1$ factors, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 5, 743–788 (English, with English and French summaries). MR 2504433, DOI 10.24033/asens.2081
Bibliographic Information
- Sorin Popa
- Affiliation: Department of Mathematics, University of California at Los Angeles, Los Angeles, California 90095-1555
- MR Author ID: 141080
- Email: popa@math.ucla.edu
- Stefaan Vaes
- Affiliation: Department of Mathematics, K.U.Leuven, Celestijnenlaan 200B, B–3001 Leuven, Belgium
- Email: stefaan.vaes@wis.kuleuven.be
- Received by editor(s): June 3, 2008
- Published electronically: August 26, 2009
- Additional Notes: The first author was partially supported by NSF Grant DMS-0601082
The second author was partially supported by Research Programme G.0231.07 of the Research Foundation—Flanders (FWO) and the Marie Curie Research Training Network Non-Commutative Geometry MRTN-CT-2006-031962. The second author would like to thank the Department of Mathematics at UCLA for their warm hospitality during the work on this paper. - © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 23 (2010), 383-403
- MSC (2000): Primary 46L10; Secondary 37A20, 28D15
- DOI: https://doi.org/10.1090/S0894-0347-09-00644-4
- MathSciNet review: 2601038