A Lindemann-Weierstrass theorem for semi-abelian varieties over function fields
HTML articles powered by AMS MathViewer
- by Daniel Bertrand and Anand Pillay;
- J. Amer. Math. Soc. 23 (2010), 491-533
- DOI: https://doi.org/10.1090/S0894-0347-09-00653-5
- Published electronically: December 2, 2009
- PDF | Request permission
Abstract:
We prove an analogue of the Lindemann-Weierstrass theorem (that the exponentials of a $\mathbb {Q}$-linearly independent set of algebraic numbers are algebraically independent), replacing $\mathbb {Q}^{alg}$ by $\mathbb {C}(t)^{alg}$ and $\mathbb {G}_{m}^{n}$ by a semi-abelian variety over $\mathbb {C}(t)^{alg}$. Both the formulations of our results and the methods are differential algebraic in nature.References
- Yves André, Mumford-Tate groups of mixed Hodge structures and the theorem of the fixed part, Compositio Math. 82 (1992), no. 1, 1–24. MR 1154159
- James Ax, Some topics in differential algebraic geometry. I. Analytic subgroups of algebraic groups, Amer. J. Math. 94 (1972), 1195–1204. MR 435088, DOI 10.2307/2373569
- A. Bertapelle: Deligne’s duality on the de Rham realizations of 1-motives; http://arxiv. org/abs/math.AG/0506344
- Daniel Bertrand, Schanuel’s conjecture for non-isoconstant elliptic curves over function fields, Model theory with applications to algebra and analysis. Vol. 1, London Math. Soc. Lecture Note Ser., vol. 349, Cambridge Univ. Press, Cambridge, 2008, pp. 41–62. MR 2441374, DOI 10.1017/CBO9780511735226.004
- D. Bertrand: Manin’s theorem of the kernel: A remark on a paper of C-L. Chai; June 2008.
- Michel Brion, Anti-affine algebraic groups, J. Algebra 321 (2009), no. 3, 934–952. MR 2488561, DOI 10.1016/j.jalgebra.2008.09.034
- W. Dale Brownawell and K. K. Kubota, The algebraic independence of Weierstrass functions and some related numbers, Acta Arith. 33 (1977), no. 2, 111–149. MR 444582, DOI 10.4064/aa-33-2-111-149
- Jean-Luc Brylinski, $“1$-motifs” et formes automorphes (théorie arithmétique des domaines de Siegel), Conference on automorphic theory (Dijon, 1981) Publ. Math. Univ. Paris VII, vol. 15, Univ. Paris VII, Paris, 1983, pp. 43–106 (French). MR 723182
- Alexandru Buium, Differential algebraic groups of finite dimension, Lecture Notes in Mathematics, vol. 1506, Springer-Verlag, Berlin, 1992. MR 1176753, DOI 10.1007/BFb0087235
- Alexandru Buium, Differential algebra and Diophantine geometry, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1994. MR 1487891
- Eduardo Cattani, Pierre Deligne, and Aroldo Kaplan, On the locus of Hodge classes, J. Amer. Math. Soc. 8 (1995), no. 2, 483–506. MR 1273413, DOI 10.1090/S0894-0347-1995-1273413-2
- Ching-Li Chai, A note on Manin’s theorem of the kernel, Amer. J. Math. 113 (1991), no. 3, 387–389. MR 1109343, DOI 10.2307/2374831
- Robert F. Coleman, Manin’s proof of the Mordell conjecture over function fields, Enseign. Math. (2) 36 (1990), no. 3-4, 393–427. MR 1096426
- Robert F. Coleman, The universal vectorial bi-extension and $p$-adic heights, Invent. Math. 103 (1991), no. 3, 631–650. MR 1091621, DOI 10.1007/BF01239529
- Pierre Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5–57 (French). MR 498551
- I. R. Shafarevich (ed.), Number theory. IV, Encyclopaedia of Mathematical Sciences, vol. 44, Springer-Verlag, Berlin, 1998. Transcendental numbers; A translation of Number theory. 4 (Russian), Ross. Akad. Nauk, Vseross. Inst. Nauchn. i Tekhn. Inform., Moscow; Translation by N. Koblitz; Translation edited by A. N. Parshin and I. R. Shafarevich. MR 1603604, DOI 10.1007/978-3-662-03644-0
- Ehud Hrushovski, The Mordell-Lang conjecture for function fields, J. Amer. Math. Soc. 9 (1996), no. 3, 667–690. MR 1333294, DOI 10.1090/S0894-0347-96-00202-0
- Nicholas M. Katz and Tadao Oda, On the differentiation of de Rham cohomology classes with respect to parameters, J. Math. Kyoto Univ. 8 (1968), 199–213. MR 237510, DOI 10.1215/kjm/1250524135
- J. Kirby: The theory of exponential differential equations; Ph. D. thesis, Oxford, 2006.
- E. R. Kolchin, Differential algebra and algebraic groups, Pure and Applied Mathematics, Vol. 54, Academic Press, New York-London, 1973. MR 568864
- E. R. Kolchin, Differential algebraic groups, Pure and Applied Mathematics, vol. 114, Academic Press, Inc., Orlando, FL, 1985. MR 776230
- E. R. Kolchin, Algebraic groups and algebraic dependence, Amer. J. Math. 90 (1968), 1151–1164. MR 240106, DOI 10.2307/2373294
- Piotr Kowalski and Anand Pillay, Quantifier elimination for algebraic $D$-groups, Trans. Amer. Math. Soc. 358 (2006), no. 1, 167–181. MR 2171228, DOI 10.1090/S0002-9947-05-03820-1
- Bernard Malgrange, Systèmes différentiels involutifs, Panoramas et Synthèses [Panoramas and Syntheses], vol. 19, Société Mathématique de France, Paris, 2005 (French, with English and French summaries). MR 2187078
- Ju. I. Manin, Rational points on algebraic curves over function fields, Izv. Akad. Nauk SSSR Ser. Mat. 27 (1963), 1395–1440 (Russian). MR 157971
- David Marker, Manin kernels, Connections between model theory and algebraic and analytic geometry, Quad. Mat., vol. 6, Dept. Math., Seconda Univ. Napoli, Caserta, 2000, pp. 1–21. MR 1930680
- David Marker and Anand Pillay, Differential Galois theory. III. Some inverse problems, Illinois J. Math. 41 (1997), no. 3, 453–461. MR 1458184
- B. Mazur and William Messing, Universal extensions and one dimensional crystalline cohomology, Lecture Notes in Mathematics, Vol. 370, Springer-Verlag, Berlin-New York, 1974. MR 374150
- Anand Pillay, Some foundational questions concerning differential algebraic groups, Pacific J. Math. 179 (1997), no. 1, 179–200. MR 1452531, DOI 10.2140/pjm.1997.179.179
- David Marker, Margit Messmer, and Anand Pillay, Model theory of fields, 2nd ed., Lecture Notes in Logic, vol. 5, Association for Symbolic Logic, La Jolla, CA; A K Peters, Ltd., Wellesley, MA, 2006. MR 2215060
- Anand Pillay, Algebraic $D$-groups and differential Galois theory, Pacific J. Math. 216 (2004), no. 2, 343–360. MR 2094550, DOI 10.2140/pjm.2004.216.343
- Anand Pillay and Martin Ziegler, Jet spaces of varieties over differential and difference fields, Selecta Math. (N.S.) 9 (2003), no. 4, 579–599. MR 2031753, DOI 10.1007/s00029-003-0339-1
- Joseph Steenbrink and Steven Zucker, Variation of mixed Hodge structure. I, Invent. Math. 80 (1985), no. 3, 489–542. MR 791673, DOI 10.1007/BF01388729
Bibliographic Information
- Daniel Bertrand
- Affiliation: Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie, Case 247, 4, Place Jussieu, F-75252 Paris Cedex 05, France
- Anand Pillay
- Affiliation: School of Mathematics, University of Leeds, Leeds, LS2 9JT, United Kingdom
- MR Author ID: 139610
- Received by editor(s): October 24, 2008
- Published electronically: December 2, 2009
- Additional Notes: The second author was supported by a Marie Curie Chair and an EPSRC grant
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 23 (2010), 491-533
- MSC (2000): Primary 12H05, 14K05, 03C60, 34M15, 11J95
- DOI: https://doi.org/10.1090/S0894-0347-09-00653-5
- MathSciNet review: 2601041