On the breakdown criterion in general relativity
HTML articles powered by AMS MathViewer
- by Sergiu Klainerman and Igor Rodnianski;
- J. Amer. Math. Soc. 23 (2010), 345-382
- DOI: https://doi.org/10.1090/S0894-0347-09-00655-9
- Published electronically: December 24, 2009
- PDF | Request permission
Abstract:
We give a geometric criterion for the breakdown of an Einstein-vacuum space-time foliated by a constant mean curvature, or maximal, foliation. More precisely we show that the foliated space-time can be extended as long as the second fundamental form and the first derivatives of the logarithm of the lapse of the foliation remain uniformly bounded. We make no restrictions on the size of the initial data. The paper uses heavily the results of the authors’ previous papers.References
- Michael T. Anderson, On long-time evolution in general relativity and geometrization of 3-manifolds, Comm. Math. Phys. 222 (2001), no. 3, 533–567. MR 1888088, DOI 10.1007/s002200100527
- J. T. Beale, T. Kato, and A. Majda, Remarks on the breakdown of smooth solutions for the $3$-D Euler equations, Comm. Math. Phys. 94 (1984), no. 1, 61–66. MR 763762
- Y. Fourès-Bruhat, Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires, Acta Math. 88 (1952), 141–225 (French). MR 53338, DOI 10.1007/BF02392131
- Demetrios Christodoulou and Sergiu Klainerman, The global nonlinear stability of the Minkowski space, Princeton Mathematical Series, vol. 41, Princeton University Press, Princeton, NJ, 1993. MR 1316662
- F. G. Friedlander, The wave equation on a curved space-time, Cambridge Monographs on Mathematical Physics, No. 2, Cambridge University Press, Cambridge-New York-Melbourne, 1975. MR 460898
- S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge Monographs on Mathematical Physics, No. 1, Cambridge University Press, London-New York, 1973. MR 424186
- Douglas M. Eardley and Vincent Moncrief, The global existence of Yang-Mills-Higgs fields in $4$-dimensional Minkowski space. I. Local existence and smoothness properties, Comm. Math. Phys. 83 (1982), no. 2, 171–191. MR 649158
- Douglas M. Eardley and Vincent Moncrief, The global existence of Yang-Mills-Higgs fields in $4$-dimensional Minkowski space. II. Completion of proof, Comm. Math. Phys. 83 (1982), no. 2, 193–212. MR 649159
- Thomas J. R. Hughes, Tosio Kato, and Jerrold E. Marsden, Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Rational Mech. Anal. 63 (1976), no. 3, 273–294 (1977). MR 420024, DOI 10.1007/BF00251584
- Sergiu Klainerman, PDE as a unified subject, Geom. Funct. Anal. Special Volume (2000), 279–315. GAFA 2000 (Tel Aviv, 1999). MR 1826256, DOI 10.1007/978-3-0346-0422-2_{1}0
- S. Klainerman and M. Machedon, Finite energy solutions of the Yang-Mills equations in $\mathbf R^{3+1}$, Ann. of Math. (2) 142 (1995), no. 1, 39–119. MR 1338675, DOI 10.2307/2118611
- Sergiu Klainerman and Igor Rodnianski, Causal geometry of Einstein-vacuum spacetimes with finite curvature flux, Invent. Math. 159 (2005), no. 3, 437–529. MR 2125732, DOI 10.1007/s00222-004-0365-4
- S. Klainerman and I. Rodnianski, A geometric approach to the Littlewood-Paley theory, Geom. Funct. Anal. 16 (2006), no. 1, 126–163. MR 2221254, DOI 10.1007/s00039-006-0551-1
- S. Klainerman and I. Rodnianski, Sharp trace theorems for null hypersurfaces on Einstein metrics with finite curvature flux, Geom. Funct. Anal. 16 (2006), no. 1, 164–229. MR 2221255, DOI 10.1007/s00039-006-0557-8
- Sergiu Klainerman and Igor Rodnianski, On the radius of injectivity of null hypersurfaces, J. Amer. Math. Soc. 21 (2008), no. 3, 775–795. MR 2393426, DOI 10.1090/S0894-0347-08-00592-4
- Sergiu Klainerman and Igor Rodnianski, A Kirchoff-Sobolev parametrix for the wave equation and applications, J. Hyperbolic Differ. Equ. 4 (2007), no. 3, 401–433. MR 2339803, DOI 10.1142/S0219891607001203
- Vincent Moncrief, An integral equation for spacetime curvature in general relativity, Surveys in differential geometry. Vol. X, Surv. Differ. Geom., vol. 10, Int. Press, Somerville, MA, 2006, pp. 109–146. MR 2408224, DOI 10.4310/SDG.2005.v10.n1.a5
- S. Sobolev, Méthodes nouvelle à resoudre le problème de Cauchy pour les équations linéaires hyperboliques normales, Matematicheskii Sbornik, vol. 1 (43) 1936, 31 -79.
- Q. Wang, Causal geometry of Einstein vacuum space-times. Ph.D. thesis, Princeton University, 2006.
Bibliographic Information
- Sergiu Klainerman
- Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544
- MR Author ID: 102350
- Email: seri@math.princeton.edu
- Igor Rodnianski
- Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544
- Email: irod@math.princeton.edu
- Received by editor(s): February 4, 2008
- Published electronically: December 24, 2009
- Additional Notes: The first author is partially supported by NSF grant DMS-0070696
The second author is partially supported by NSF grant DMS-0702270 - © Copyright 2009 American Mathematical Society
- Journal: J. Amer. Math. Soc. 23 (2010), 345-382
- MSC (2010): Primary 35J10
- DOI: https://doi.org/10.1090/S0894-0347-09-00655-9
- MathSciNet review: 2601037