On the breakdown criterion in general relativity
Authors:
Sergiu Klainerman and Igor Rodnianski
Journal:
J. Amer. Math. Soc. 23 (2010), 345-382
MSC (2010):
Primary 35J10
DOI:
https://doi.org/10.1090/S0894-0347-09-00655-9
Published electronically:
December 24, 2009
MathSciNet review:
2601037
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We give a geometric criterion for the breakdown of an Einstein-vacuum space-time foliated by a constant mean curvature, or maximal, foliation. More precisely we show that the foliated space-time can be extended as long as the second fundamental form and the first derivatives of the logarithm of the lapse of the foliation remain uniformly bounded. We make no restrictions on the size of the initial data. The paper uses heavily the results of the authors’ previous papers.
- Michael T. Anderson, On long-time evolution in general relativity and geometrization of 3-manifolds, Comm. Math. Phys. 222 (2001), no. 3, 533–567. MR 1888088, DOI https://doi.org/10.1007/s002200100527
- J. T. Beale, T. Kato, and A. Majda, Remarks on the breakdown of smooth solutions for the $3$-D Euler equations, Comm. Math. Phys. 94 (1984), no. 1, 61–66. MR 763762
- Y. Fourès-Bruhat, Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires, Acta Math. 88 (1952), 141–225 (French). MR 53338, DOI https://doi.org/10.1007/BF02392131
- Demetrios Christodoulou and Sergiu Klainerman, The global nonlinear stability of the Minkowski space, Princeton Mathematical Series, vol. 41, Princeton University Press, Princeton, NJ, 1993. MR 1316662
- F. G. Friedlander, The wave equation on a curved space-time, Cambridge University Press, Cambridge-New York-Melbourne, 1975. Cambridge Monographs on Mathematical Physics, No. 2. MR 0460898
- S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge University Press, London-New York, 1973. Cambridge Monographs on Mathematical Physics, No. 1. MR 0424186
- Douglas M. Eardley and Vincent Moncrief, The global existence of Yang-Mills-Higgs fields in $4$-dimensional Minkowski space. I. Local existence and smoothness properties, Comm. Math. Phys. 83 (1982), no. 2, 171–191. MR 649158
- Douglas M. Eardley and Vincent Moncrief, The global existence of Yang-Mills-Higgs fields in $4$-dimensional Minkowski space. II. Completion of proof, Comm. Math. Phys. 83 (1982), no. 2, 193–212. MR 649159
- Thomas J. R. Hughes, Tosio Kato, and Jerrold E. Marsden, Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Rational Mech. Anal. 63 (1976), no. 3, 273–294 (1977). MR 420024, DOI https://doi.org/10.1007/BF00251584
- Sergiu Klainerman, PDE as a unified subject, Geom. Funct. Anal. Special Volume (2000), 279–315. GAFA 2000 (Tel Aviv, 1999). MR 1826256, DOI https://doi.org/10.1007/978-3-0346-0422-2_10
- S. Klainerman and M. Machedon, Finite energy solutions of the Yang-Mills equations in $\mathbf R^{3+1}$, Ann. of Math. (2) 142 (1995), no. 1, 39–119. MR 1338675, DOI https://doi.org/10.2307/2118611
- Sergiu Klainerman and Igor Rodnianski, Causal geometry of Einstein-vacuum spacetimes with finite curvature flux, Invent. Math. 159 (2005), no. 3, 437–529. MR 2125732, DOI https://doi.org/10.1007/s00222-004-0365-4
- S. Klainerman and I. Rodnianski, A geometric approach to the Littlewood-Paley theory, Geom. Funct. Anal. 16 (2006), no. 1, 126–163. MR 2221254, DOI https://doi.org/10.1007/s00039-006-0551-1
- S. Klainerman and I. Rodnianski, Sharp trace theorems for null hypersurfaces on Einstein metrics with finite curvature flux, Geom. Funct. Anal. 16 (2006), no. 1, 164–229. MR 2221255, DOI https://doi.org/10.1007/s00039-006-0557-8
- Sergiu Klainerman and Igor Rodnianski, On the radius of injectivity of null hypersurfaces, J. Amer. Math. Soc. 21 (2008), no. 3, 775–795. MR 2393426, DOI https://doi.org/10.1090/S0894-0347-08-00592-4
- Sergiu Klainerman and Igor Rodnianski, A Kirchoff-Sobolev parametrix for the wave equation and applications, J. Hyperbolic Differ. Equ. 4 (2007), no. 3, 401–433. MR 2339803, DOI https://doi.org/10.1142/S0219891607001203
- Vincent Moncrief, An integral equation for spacetime curvature in general relativity, Surveys in differential geometry. Vol. X, Surv. Differ. Geom., vol. 10, Int. Press, Somerville, MA, 2006, pp. 109–146. MR 2408224, DOI https://doi.org/10.4310/SDG.2005.v10.n1.a5
- S. Sobolev, Méthodes nouvelle à resoudre le problème de Cauchy pour les équations linéaires hyperboliques normales, Matematicheskii Sbornik, vol. 1 (43) 1936, 31 -79.
- Q. Wang, Causal geometry of Einstein vacuum space-times. Ph.D. thesis, Princeton University, 2006.
Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 35J10
Retrieve articles in all journals with MSC (2010): 35J10
Additional Information
Sergiu Klainerman
Affiliation:
Department of Mathematics, Princeton University, Princeton, New Jersey 08544
MR Author ID:
102350
Email:
seri@math.princeton.edu
Igor Rodnianski
Affiliation:
Department of Mathematics, Princeton University, Princeton, New Jersey 08544
Email:
irod@math.princeton.edu
Received by editor(s):
February 4, 2008
Published electronically:
December 24, 2009
Additional Notes:
The first author is partially supported by NSF grant DMS-0070696
The second author is partially supported by NSF grant DMS-0702270
Article copyright:
© Copyright 2009
American Mathematical Society