Expanding translates of curves and Dirichlet-Minkowski theorem on linear forms
HTML articles powered by AMS MathViewer
- by Nimish A. Shah;
- J. Amer. Math. Soc. 23 (2010), 563-589
- DOI: https://doi.org/10.1090/S0894-0347-09-00657-2
- Published electronically: December 29, 2009
- PDF | Request permission
Abstract:
We show that a multiplicative form of Dirichlet’s theorem on simultaneous Diophantine approximation as formulated by Minkowski cannot be improved for almost all points on any analytic curve in $\mathbb {R}^k$ which is not contained in a proper affine subspace. Such an investigation was initiated by Davenport and Schmidt in the late 1960s.
The Diophantine problem is then settled via showing that a certain sequence of expanding translates of curves in the homogeneous space of unimodular lattices in $\mathbb {R}^{k+1}$ gets equidistributed in the limit. We use Ratner’s theorem on unipotent flows, linearization techniques, and a new observation about intertwined linear dynamics of various $\mathrm {SL}(m,\mathbb {R})$’s containeod in $\mathrm {SL}(k+1,\mathbb {R})$.
References
- R. C. Baker, Dirichlet’s theorem on Diophantine approximation, Math. Proc. Cambridge Philos. Soc. 83 (1978), no. 1, 37–59. MR 485713, DOI 10.1017/S030500410005427X
- Yann Bugeaud, Approximation by algebraic integers and Hausdorff dimension, J. London Math. Soc. (2) 65 (2002), no. 3, 547–559. MR 1895732, DOI 10.1112/S0024610702003137
- J. W. S. Cassels, An introduction to the geometry of numbers, Die Grundlehren der mathematischen Wissenschaften, Band 99, Springer-Verlag, Berlin-New York, 1971. Second printing, corrected. MR 306130
- S. G. Dani, Divergent trajectories of flows on homogeneous spaces and Diophantine approximation, J. Reine Angew. Math. 359 (1985), 55–89. MR 794799, DOI 10.1515/crll.1985.359.55
- S. G. Dani and G. A. Margulis, Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces, Proc. Indian Acad. Sci. Math. Sci. 101 (1991), no. 1, 1–17. MR 1101994, DOI 10.1007/BF02872005
- S. G. Dani and G. A. Margulis, Limit distributions of orbits of unipotent flows and values of quadratic forms, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 91–137. MR 1237827
- H. Davenport and W. M. Schmidt, Dirichlet’s theorem on diophantine approximation. II, Acta Arith. 16 (1969/70), 413–424. MR 279040, DOI 10.4064/aa-16-4-413-424
- H. Davenport and Wolfgang M. Schmidt, Dirichlet’s theorem on diophantine approximation, Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69) Academic Press, London-New York, 1970, pp. 113–132. MR 272722
- M. M. Dodson, B. P. Rynne, and J. A. G. Vickers, Dirichlet’s theorem and Diophantine approximation on manifolds, J. Number Theory 36 (1990), no. 1, 85–88. MR 1068674, DOI 10.1016/0022-314X(90)90006-D
- D. Y. Kleinbock and G. A. Margulis, Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. of Math. (2) 148 (1998), no. 1, 339–360. MR 1652916, DOI 10.2307/120997
- Dmitry Kleinbock and Barak Weiss, Dirichlet’s theorem on Diophantine approximation and homogeneous flows, J. Mod. Dyn. 2 (2008), no. 1, 43–62. MR 2366229, DOI 10.3934/jmd.2008.2.43
- Shahar Mozes and Nimish Shah, On the space of ergodic invariant measures of unipotent flows, Ergodic Theory Dynam. Systems 15 (1995), no. 1, 149–159. MR 1314973, DOI 10.1017/S0143385700008282
- Marina Ratner, On Raghunathan’s measure conjecture, Ann. of Math. (2) 134 (1991), no. 3, 545–607. MR 1135878, DOI 10.2307/2944357
- Marina Ratner, Raghunathan’s topological conjecture and distributions of unipotent flows, Duke Math. J. 63 (1991), no. 1, 235–280. MR 1106945, DOI 10.1215/S0012-7094-91-06311-8
- Wolfgang M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics, vol. 785, Springer, Berlin, 1980. MR 568710
- Nimish A. Shah, Uniformly distributed orbits of certain flows on homogeneous spaces, Math. Ann. 289 (1991), no. 2, 315–334. MR 1092178, DOI 10.1007/BF01446574
- Nimish A. Shah, Limit distributions of polynomial trajectories on homogeneous spaces, Duke Math. J. 75 (1994), no. 3, 711–732. MR 1291701, DOI 10.1215/S0012-7094-94-07521-2
- Nimish A. Shah, Limit distributions of expanding translates of certain orbits on homogeneous spaces, Proc. Indian Acad. Sci. Math. Sci. 106 (1996), no. 2, 105–125. MR 1403756, DOI 10.1007/BF02837164
- Nimish A. Shah, Limiting distributions of curves under geodesic flow on hyperbolic manifolds, Duke Math. J. 148 (2009), no. 2, 251–279. MR 2524496, DOI 10.1215/00127094-2009-026
- Nimish A. Shah, Equidistribution of expanding translates of curves and Dirichlet’s theorem on Diophantine approximation, Invent. Math. 177 (2009), no. 3, 509–532. MR 2534098, DOI 10.1007/s00222-009-0186-6
Bibliographic Information
- Nimish A. Shah
- Affiliation: Tata Institute of Fundamental Research, Mumbai 400005, India
- Address at time of publication: Department of Mathematics, Ohio State University, Columbus, Ohio 43210
- Email: nimish@math.tifr.res.in; shah@math.osu.edu
- Received by editor(s): December 15, 2008
- Published electronically: December 29, 2009
- Additional Notes: This research was supported in part by Swarnajayanti Fellowship
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 23 (2010), 563-589
- MSC (2010): Primary 22E40, 11J83
- DOI: https://doi.org/10.1090/S0894-0347-09-00657-2
- MathSciNet review: 2601043