## Expanding translates of curves and Dirichlet-Minkowski theorem on linear forms

HTML articles powered by AMS MathViewer

- by Nimish A. Shah PDF
- J. Amer. Math. Soc.
**23**(2010), 563-589 Request permission

## Abstract:

We show that a multiplicative form of Dirichlet’s theorem on simultaneous Diophantine approximation as formulated by Minkowski cannot be improved for almost all points on any analytic curve in $\mathbb {R}^k$ which is not contained in a proper affine subspace. Such an investigation was initiated by Davenport and Schmidt in the late 1960s.

The Diophantine problem is then settled via showing that a certain sequence of expanding translates of curves in the homogeneous space of unimodular lattices in $\mathbb {R}^{k+1}$ gets equidistributed in the limit. We use Ratner’s theorem on unipotent flows, linearization techniques, and a new observation about intertwined linear dynamics of various $\mathrm {SL}(m,\mathbb {R})$’s containeod in $\mathrm {SL}(k+1,\mathbb {R})$.

## References

- R. C. Baker,
*Dirichlet’s theorem on Diophantine approximation*, Math. Proc. Cambridge Philos. Soc.**83**(1978), no. 1, 37–59. MR**485713**, DOI 10.1017/S030500410005427X - Yann Bugeaud,
*Approximation by algebraic integers and Hausdorff dimension*, J. London Math. Soc. (2)**65**(2002), no. 3, 547–559. MR**1895732**, DOI 10.1112/S0024610702003137 - J. W. S. Cassels,
*An introduction to the geometry of numbers*, Die Grundlehren der mathematischen Wissenschaften, Band 99, Springer-Verlag, Berlin-New York, 1971. Second printing, corrected. MR**0306130** - S. G. Dani,
*Divergent trajectories of flows on homogeneous spaces and Diophantine approximation*, J. Reine Angew. Math.**359**(1985), 55–89. MR**794799**, DOI 10.1515/crll.1985.359.55 - S. G. Dani and G. A. Margulis,
*Asymptotic behaviour of trajectories of unipotent flows on homogeneous spaces*, Proc. Indian Acad. Sci. Math. Sci.**101**(1991), no. 1, 1–17. MR**1101994**, DOI 10.1007/BF02872005 - S. G. Dani and G. A. Margulis,
*Limit distributions of orbits of unipotent flows and values of quadratic forms*, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 91–137. MR**1237827** - H. Davenport and W. M. Schmidt,
*Dirichlet’s theorem on diophantine approximation. II*, Acta Arith.**16**(1969/70), 413–424. MR**279040**, DOI 10.4064/aa-16-4-413-424 - H. Davenport and Wolfgang M. Schmidt,
*Dirichlet’s theorem on diophantine approximation*, Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69) Academic Press, London, 1970, pp. 113–132. MR**0272722** - M. M. Dodson, B. P. Rynne, and J. A. G. Vickers,
*Dirichlet’s theorem and Diophantine approximation on manifolds*, J. Number Theory**36**(1990), no. 1, 85–88. MR**1068674**, DOI 10.1016/0022-314X(90)90006-D - D. Y. Kleinbock and G. A. Margulis,
*Flows on homogeneous spaces and Diophantine approximation on manifolds*, Ann. of Math. (2)**148**(1998), no. 1, 339–360. MR**1652916**, DOI 10.2307/120997 - Dmitry Kleinbock and Barak Weiss,
*Dirichlet’s theorem on Diophantine approximation and homogeneous flows*, J. Mod. Dyn.**2**(2008), no. 1, 43–62. MR**2366229**, DOI 10.3934/jmd.2008.2.43 - Shahar Mozes and Nimish Shah,
*On the space of ergodic invariant measures of unipotent flows*, Ergodic Theory Dynam. Systems**15**(1995), no. 1, 149–159. MR**1314973**, DOI 10.1017/S0143385700008282 - Marina Ratner,
*On Raghunathan’s measure conjecture*, Ann. of Math. (2)**134**(1991), no. 3, 545–607. MR**1135878**, DOI 10.2307/2944357 - Marina Ratner,
*Raghunathan’s topological conjecture and distributions of unipotent flows*, Duke Math. J.**63**(1991), no. 1, 235–280. MR**1106945**, DOI 10.1215/S0012-7094-91-06311-8 - Wolfgang M. Schmidt,
*Diophantine approximation*, Lecture Notes in Mathematics, vol. 785, Springer, Berlin, 1980. MR**568710** - Nimish A. Shah,
*Uniformly distributed orbits of certain flows on homogeneous spaces*, Math. Ann.**289**(1991), no. 2, 315–334. MR**1092178**, DOI 10.1007/BF01446574 - Nimish A. Shah,
*Limit distributions of polynomial trajectories on homogeneous spaces*, Duke Math. J.**75**(1994), no. 3, 711–732. MR**1291701**, DOI 10.1215/S0012-7094-94-07521-2 - Nimish A. Shah,
*Limit distributions of expanding translates of certain orbits on homogeneous spaces*, Proc. Indian Acad. Sci. Math. Sci.**106**(1996), no. 2, 105–125. MR**1403756**, DOI 10.1007/BF02837164 - Nimish A. Shah,
*Limiting distributions of curves under geodesic flow on hyperbolic manifolds*, Duke Math. J.**148**(2009), no. 2, 251–279. MR**2524496**, DOI 10.1215/00127094-2009-026 - Nimish A. Shah,
*Equidistribution of expanding translates of curves and Dirichlet’s theorem on Diophantine approximation*, Invent. Math.**177**(2009), no. 3, 509–532. MR**2534098**, DOI 10.1007/s00222-009-0186-6

## Additional Information

**Nimish A. Shah**- Affiliation: Tata Institute of Fundamental Research, Mumbai 400005, India
- Address at time of publication: Department of Mathematics, Ohio State University, Columbus, Ohio 43210
- Email: nimish@math.tifr.res.in; shah@math.osu.edu
- Received by editor(s): December 15, 2008
- Published electronically: December 29, 2009
- Additional Notes: This research was supported in part by Swarnajayanti Fellowship
- © Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc.
**23**(2010), 563-589 - MSC (2010): Primary 22E40, 11J83
- DOI: https://doi.org/10.1090/S0894-0347-09-00657-2
- MathSciNet review: 2601043