A new proof of Gromov’s theorem on groups of polynomial growth
HTML articles powered by AMS MathViewer
- by Bruce Kleiner;
- J. Amer. Math. Soc. 23 (2010), 815-829
- DOI: https://doi.org/10.1090/S0894-0347-09-00658-4
- Published electronically: December 28, 2009
- PDF | Request permission
Abstract:
We give a new proof of Gromov’s theorem that any finitely generated group of polynomial growth has a finite index nilpotent subgroup. The proof does not rely on the Montgomery-Zippin-Yamabe structure theory of locally compact groups.References
- Tobias H. Colding and William P. Minicozzi II, Harmonic functions on manifolds, Ann. of Math. (2) 146 (1997), no. 3, 725–747. MR 1491451, DOI 10.2307/2952459
- Thierry Coulhon and Laurent Saloff-Coste, Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamericana 9 (1993), no. 2, 293–314 (French). MR 1232845, DOI 10.4171/RMI/138
- Thierry Coulhon and Laurent Saloff-Coste, Variétés riemanniennes isométriques à l’infini, Rev. Mat. Iberoamericana 11 (1995), no. 3, 687–726 (French). MR 1363211, DOI 10.4171/RMI/190
- Pierre de la Harpe and Alain Valette, La propriété $(T)$ de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Astérisque 175 (1989), 158 (French, with English summary). With an appendix by M. Burger. MR 1023471
- David Fisher and Gregory Margulis, Almost isometric actions, property (T), and local rigidity, Invent. Math. 162 (2005), no. 1, 19–80. MR 2198325, DOI 10.1007/s00222-004-0437-5
- Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53–73. MR 623534, DOI 10.1007/BF02698687
- M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1–295. MR 1253544
- M. Gromov, Random walk in random groups, Geom. Funct. Anal. 13 (2003), no. 1, 73–146. MR 1978492, DOI 10.1007/s000390300002
- Bruce Kleiner and Bernhard Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. 86 (1997), 115–197 (1998). MR 1608566, DOI 10.1007/BF02698902
- Nicholas J. Korevaar and Richard M. Schoen, Global existence theorems for harmonic maps to non-locally compact spaces, Comm. Anal. Geom. 5 (1997), no. 2, 333–387. MR 1483983, DOI 10.4310/CAG.1997.v5.n2.a4
- John Milnor, Growth of finitely generated solvable groups, J. Differential Geometry 2 (1968), 447–449. MR 244899
- Ngaiming Mok, Harmonic forms with values in locally constant Hilbert bundles, Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993), 1995, pp. 433–453. MR 1364901
- Deane Montgomery and Leo Zippin, Topological transformation groups, Robert E. Krieger Publishing Co., Huntington, NY, 1974. Reprint of the 1955 original. MR 379739
- Panos Papasoglu, Quasi-isometry invariance of group splittings, Ann. of Math. (2) 161 (2005), no. 2, 759–830. MR 2153400, DOI 10.4007/annals.2005.161.759
- Yehuda Shalom, The growth of linear groups, J. Algebra 199 (1998), no. 1, 169–174. MR 1489360, DOI 10.1006/jabr.1997.7186
- A. S. Švarc, A volume invariant of coverings, Dokl. Akad. Nauk SSSR (N.S.) 105 (1955), 32–34 (Russian). MR 75634
- R. Schoen and S.-T. Yau, Lectures on differential geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994. Lecture notes prepared by Wei Yue Ding, Kung Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu; Translated from the Chinese by Ding and S. Y. Cheng; With a preface translated from the Chinese by Kaising Tso. MR 1333601
- J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250–270. MR 286898, DOI 10.1016/0021-8693(72)90058-0
- L. van den Dries and A. J. Wilkie, Gromov’s theorem on groups of polynomial growth and elementary logic, J. Algebra 89 (1984), no. 2, 349–374. MR 751150, DOI 10.1016/0021-8693(84)90223-0
- Joseph A. Wolf, Growth of finitely generated solvable groups and curvature of Riemannian manifolds, J. Differential Geometry 2 (1968), 421–446. MR 248688
Bibliographic Information
- Bruce Kleiner
- Affiliation: Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012-1185
- Email: bkleiner@cims.nyu.edu
- Received by editor(s): May 29, 2009
- Published electronically: December 28, 2009
- Additional Notes: The author was supported by NSF Grant DMS 0701515.
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 23 (2010), 815-829
- MSC (2010): Primary 20F65, 20F69, 20F67, 20F18
- DOI: https://doi.org/10.1090/S0894-0347-09-00658-4
- MathSciNet review: 2629989