Essential $p$-dimension of $\operatorname {\mathbf {PGL}}(p^2)$
HTML articles powered by AMS MathViewer
- by Alexander S. Merkurjev;
- J. Amer. Math. Soc. 23 (2010), 693-712
- DOI: https://doi.org/10.1090/S0894-0347-10-00661-2
- Published electronically: January 15, 2010
- PDF | Request permission
Abstract:
Let $p$ be a prime integer and $F$ a field of characteristic different from $p$. We prove that the essential $p$-dimension of the group $\operatorname {\mathbf {PGL}}_F(p^2)$ is equal to $p^2+1$. This integer measures the complexity of the class of central simple algebras of degree $p^2$ over field extensions of $F$.References
- Grégory Berhuy and Giordano Favi, Essential dimension: a functorial point of view (after A. Merkurjev), Doc. Math. 8 (2003), 279–330. MR 2029168
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1999. With an appendix by David A. Buchsbaum; Reprint of the 1956 original. MR 1731415
- Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, La $R$-équivalence sur les tores, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 175–229 (French). MR 450280, DOI 10.24033/asens.1325
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
- Skip Garibaldi, Alexander Merkurjev, and Jean-Pierre Serre, Cohomological invariants in Galois cohomology, University Lecture Series, vol. 28, American Mathematical Society, Providence, RI, 2003. MR 1999383, DOI 10.1090/ulect/028
- Bill Jacob and Adrian Wadsworth, Division algebras over Henselian fields, J. Algebra 128 (1990), no. 1, 126–179. MR 1031915, DOI 10.1016/0021-8693(90)90047-R
- Nikita A. Karpenko and Alexander S. Merkurjev, Essential dimension of finite $p$-groups, Invent. Math. 172 (2008), no. 3, 491–508. MR 2393078, DOI 10.1007/s00222-007-0106-6
- Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, The book of involutions, American Mathematical Society Colloquium Publications, vol. 44, American Mathematical Society, Providence, RI, 1998. With a preface in French by J. Tits. MR 1632779, DOI 10.1090/coll/044
- M. Lorenz, Z. Reichstein, L. H. Rowen, and D. J. Saltman, Fields of definition for division algebras, J. London Math. Soc. (2) 68 (2003), no. 3, 651–670. MR 2009442, DOI 10.1112/S0024610703004678
- Alexander Merkurjev, $R$-equivalence on three-dimensional tori and zero-cycles, Algebra Number Theory 2 (2008), no. 1, 69–89. MR 2377363, DOI 10.2140/ant.2008.2.69
- Alexander S. Merkurjev, Essential dimension, Quadratic forms—algebra, arithmetic, and geometry, Contemp. Math., vol. 493, Amer. Math. Soc., Providence, RI, 2009, pp. 299–325. MR 2537108, DOI 10.1090/conm/493/09676
- Zinovy Reichstein and Boris Youssin, Essential dimensions of algebraic groups and a resolution theorem for $G$-varieties, Canad. J. Math. 52 (2000), no. 5, 1018–1056. With an appendix by János Kollár and Endre Szabó. MR 1782331, DOI 10.4153/CJM-2000-043-5
- Louis H. Rowen and David J. Saltman, Prime-to-$p$ extensions of division algebras, Israel J. Math. 78 (1992), no. 2-3, 197–207. MR 1194966, DOI 10.1007/BF02808057
- Jean-Pierre Tignol, Sur les classes de similitude de corps à involution de degré $8$, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 20, A875–A876 (French, with English summary). MR 498496
- V. E. Voskresenskiĭ, Algebraic groups and their birational invariants, Translations of Mathematical Monographs, vol. 179, American Mathematical Society, Providence, RI, 1998. Translated from the Russian manuscript by Boris Kunyavski [Boris È. Kunyavskiĭ]. MR 1634406, DOI 10.1090/mmono/179
Bibliographic Information
- Alexander S. Merkurjev
- Affiliation: Department of Mathematics, University of California, Los Angeles, California 90095-1555
- MR Author ID: 191878
- ORCID: 0000-0002-4447-1838
- Email: merkurev@math.ucla.edu
- Received by editor(s): December 8, 2008
- Received by editor(s) in revised form: July 12, 2009
- Published electronically: January 15, 2010
- Additional Notes: The work has been supported by the NSF grant DMS #0652316.
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 23 (2010), 693-712
- MSC (2010): Primary 16K50, 20G15
- DOI: https://doi.org/10.1090/S0894-0347-10-00661-2
- MathSciNet review: 2629984