Log canonical singularities are Du Bois
HTML articles powered by AMS MathViewer
- by János Kollár and Sándor J Kovács;
- J. Amer. Math. Soc. 23 (2010), 791-813
- DOI: https://doi.org/10.1090/S0894-0347-10-00663-6
- Published electronically: February 22, 2010
- PDF | Request permission
Previous version: Original version posted February 12, 2010
Corrected version: Current version corrects publisher's introduction of inconsistent rendering of script O.
Abstract:
A recurring difficulty in the Minimal Model Program is that while log terminal singularities are quite well behaved (for instance, they are rational), log canonical singularities are much more complicated; they need not even be Cohen-Macaulay. The aim of this paper is to prove that log canonical singularities are Du Bois. The concept of Du Bois singularities, introduced by Steenbrink, is a weakening of rationality. We also prove flatness of the cohomology sheaves of the relative dualizing complex of a projective family with Du Bois fibers. This implies that each connected component of the moduli space of stable log varieties parametrizes either only Cohen-Macaulay or only non-Cohen-Macaulay objects.References
- Allen B. Altman and Steven L. Kleiman, Compactifying the Picard scheme, Adv. in Math. 35 (1980), no. 1, 50–112. MR 555258, DOI 10.1016/0001-8708(80)90043-2
- F. Ambro, Quasi-log varieties, Tr. Mat. Inst. Steklova 240 (2003), no. Biratsion. Geom. Lineĭn. Sist. Konechno Porozhdennye Algebry, 220–239; English transl., Proc. Steklov Inst. Math. 1(240) (2003), 214–233. MR 1993751
- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 242802
- C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan, Existence of minimal models for varieties of log general type, Journal of the AMS 23 (2010), 405-468.
- François R. Cossec and Igor V. Dolgachev, Enriques surfaces. I, Progress in Mathematics, vol. 76, Birkhäuser Boston, Inc., Boston, MA, 1989. MR 986969, DOI 10.1007/978-1-4612-3696-2
- Philippe Du Bois, Complexe de de Rham filtré d’une variété singulière, Bull. Soc. Math. France 109 (1981), no. 1, 41–81 (French). MR 613848, DOI 10.24033/bsmf.1932
- Philippe Dubois and Pierre Jarraud, Une propriété de commutation au changement de base des images directes supérieures du faisceau structural, C. R. Acad. Sci. Paris Sér. A 279 (1974), 745–747 (French). MR 376678
- Osamu Fujino, Abundance theorem for semi log canonical threefolds, Duke Math. J. 102 (2000), no. 3, 513–532. MR 1756108, DOI 10.1215/S0012-7094-00-10237-2
- O. Fujino, Introduction to the log minimal model program for log canonical pairs, unpublished manuscript, version 4.02, December 19, 2008.
- F. Guillén, V. Navarro Aznar, P. Pascual Gainza, and F. Puerta, Hyperrésolutions cubiques et descente cohomologique, Lecture Notes in Mathematics, vol. 1335, Springer-Verlag, Berlin, 1988 (French). Papers from the Seminar on Hodge-Deligne Theory held in Barcelona, 1982. MR 972983, DOI 10.1007/BFb0085054
- Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR 222093, DOI 10.1007/BFb0080482
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157, DOI 10.1007/978-1-4757-3849-0
- Shihoko Ishii, On isolated Gorenstein singularities, Math. Ann. 270 (1985), no. 4, 541–554. MR 776171, DOI 10.1007/BF01455303
- Shihoko Ishii, Du Bois singularities on a normal surface, Complex analytic singularities, Adv. Stud. Pure Math., vol. 8, North-Holland, Amsterdam, 1987, pp. 153–163. MR 894291, DOI 10.2969/aspm/00810153
- Shihoko Ishii, Isolated $Q$-Gorenstein singularities of dimension three, Complex analytic singularities, Adv. Stud. Pure Math., vol. 8, North-Holland, Amsterdam, 1987, pp. 165–198. MR 894292, DOI 10.2969/aspm/00810165
- Masayuki Kawakita, Inversion of adjunction on log canonicity, Invent. Math. 167 (2007), no. 1, 129–133. MR 2264806, DOI 10.1007/s00222-006-0008-z
- Yujiro Kawamata, On Fujita’s freeness conjecture for $3$-folds and $4$-folds, Math. Ann. 308 (1997), no. 3, 491–505. MR 1457742, DOI 10.1007/s002080050085
- János Kollár, Higher direct images of dualizing sheaves. I, Ann. of Math. (2) 123 (1986), no. 1, 11–42. MR 825838, DOI 10.2307/1971351
- János Kollár, Higher direct images of dualizing sheaves. II, Ann. of Math. (2) 124 (1986), no. 1, 171–202. MR 847955, DOI 10.2307/1971390
- János Kollár, Shafarevich maps and automorphic forms, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 1995. MR 1341589, DOI 10.1515/9781400864195
- J. Kollár, Exercises in the birational geometry of algebraic varieties, preprint, 2008. arXiv:0809.2579v2 [math.AG]
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959, DOI 10.1017/CBO9780511662560
- Flips and abundance for algebraic threefolds, Société Mathématique de France, Paris, 1992. Papers from the Second Summer Seminar on Algebraic Geometry held at the University of Utah, Salt Lake City, Utah, August 1991; Astérisque No. 211 (1992). MR 1225842
- Sándor J. Kovács, Rational, log canonical, Du Bois singularities: on the conjectures of Kollár and Steenbrink, Compositio Math. 118 (1999), no. 2, 123–133. MR 1713307, DOI 10.1023/A:1001120909269
- Sándor J. Kovács, A characterization of rational singularities, Duke Math. J. 102 (2000), no. 2, 187–191. MR 1749436, DOI 10.1215/S0012-7094-00-10221-9
- Sándor Kovács, Rational, log canonical, Du Bois singularities. II. Kodaira vanishing and small deformations, Compositio Math. 121 (2000), no. 3, 297–304. MR 1761628, DOI 10.1023/A:1001830707422
- S. J. Kovács and K. E. Schwede, Hodge theory meets the minimal model program: A survey of log canonical and Du Bois singularities, 2009. arXiv:0909.0993v1 [math.AG]
- S. J. Kovács, K. E. Schwede, and K. E. Smith, The canonical sheaf of Du Bois singularities, to appear in Advances in Math., 2008. arXiv:0801.1541v1 [math.AG]
- Chris A. M. Peters and Joseph H. M. Steenbrink, Mixed Hodge structures, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 52, Springer-Verlag, Berlin, 2008. MR 2393625
- Morihiko Saito, Mixed Hodge complexes on algebraic varieties, Math. Ann. 316 (2000), no. 2, 283–331. MR 1741272, DOI 10.1007/s002080050014
- K. Schwede, On Du Bois and F-injective singularities, Ph.D. thesis, University of Washington, 2006.
- Karl Schwede, A simple characterization of Du Bois singularities, Compos. Math. 143 (2007), no. 4, 813–828. MR 2339829, DOI 10.1112/S0010437X07003004
- K. Schwede, Centers of F-purity, preprint, 2008. arXiv:0807.1654v3 [math.AC]
- Karl Schwede, $F$-injective singularities are Du Bois, Amer. J. Math. 131 (2009), no. 2, 445–473. MR 2503989, DOI 10.1353/ajm.0.0049
- J. H. M. Steenbrink, Mixed Hodge structures associated with isolated singularities, Singularities, Part 2 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 513–536. MR 713277, DOI 10.1090/pspum/040.2/713277
Bibliographic Information
- János Kollár
- Affiliation: Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, New Jersey 08544-1000
- MR Author ID: 104280
- Email: kollar@math.princeton.edu
- Sándor J Kovács
- Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195-4350
- MR Author ID: 289685
- Email: skovacs@uw.edu
- Received by editor(s): April 27, 2009
- Received by editor(s) in revised form: November 30, 2009
- Published electronically: February 22, 2010
- Additional Notes: The first author was supported in part by NSF Grant DMS-0758275.
The second author was supported in part by NSF Grants DMS-0554697 and DMS-0856185 and the Craig McKibben and Sarah Merner Endowed Professorship in Mathematics - © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 23 (2010), 791-813
- MSC (2010): Primary 14J17, 14B07, 14E30, 14D99
- DOI: https://doi.org/10.1090/S0894-0347-10-00663-6
- MathSciNet review: 2629988