Uniqueness of enhancement for triangulated categories
Authors:
Valery A. Lunts and Dmitri O. Orlov
Journal:
J. Amer. Math. Soc. 23 (2010), 853-908
MSC (2010):
Primary 14F05, 18E30
DOI:
https://doi.org/10.1090/S0894-0347-10-00664-8
Published electronically:
February 8, 2010
MathSciNet review:
2629991
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: The paper contains general results on the uniqueness of a DG enhancement for triangulated categories. As a consequence we obtain such uniqueness for the unbounded derived categories of quasi-coherent sheaves, for the triangulated categories of perfect complexes, and for the bounded derived categories of coherent sheaves on quasi-projective schemes. If a scheme is projective, then we also prove a strong uniqueness for the triangulated category of perfect complexes and for the bounded derived categories of coherent sheaves. These results directly imply that fully faithful functors from the bounded derived categories of coherent sheaves and the triangulated categories of perfect complexes on projective schemes can be represented by objects on the product.
- [SGA4] Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, Lecture Notes in Mathematics, Vol. 269, Springer-Verlag, Berlin-New York, 1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. MR 0354652
- [Ba] M. R. Ballard, Equivalences of derived categories of sheaves on quasi-projective schemes, arXiv:0905.3148.
- [BN] Marcel Bökstedt and Amnon Neeman, Homotopy limits in triangulated categories, Compositio Math. 86 (1993), no. 2, 209–234. MR 1214458
- [BvB] A. Bondal and M. van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1–36, 258 (English, with English and Russian summaries). MR 1996800
- [BK] A. I. Bondal and M. M. Kapranov, Framed triangulated categories, Mat. Sb. 181 (1990), no. 5, 669–683 (Russian); English transl., Math. USSR-Sb. 70 (1991), no. 1, 93–107. MR 1055981, https://doi.org/10.1070/SM1991v070n01ABEH001253
- [BLL] Alexey I. Bondal, Michael Larsen, and Valery A. Lunts, Grothendieck ring of pretriangulated categories, Int. Math. Res. Not. 29 (2004), 1461–1495. MR 2051435, https://doi.org/10.1155/S1073792804140385
- [Dr] Vladimir Drinfeld, DG quotients of DG categories, J. Algebra 272 (2004), no. 2, 643–691. MR 2028075, https://doi.org/10.1016/j.jalgebra.2003.05.001
- [ELO1] Alexander I. Efimov, Valery A. Lunts, and Dmitri O. Orlov, Deformation theory of objects in homotopy and derived categories. I. General theory, Adv. Math. 222 (2009), no. 2, 359–401. MR 2538013, https://doi.org/10.1016/j.aim.2009.03.021
- [Ga] Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448 (French). MR 0232821
- [EGA1] A. Grotendik and Ž. A. D′edonne, Elements of algebraic topology, Uspehi Mat. Nauk 27 (1972), no. 2(164), 135–148 (Russian). Translated from the French (Éléments de géométrie algébrique, I: Le langage des schemas, second edition, pp. 4–18, Springer, Berlin, 1971) by F. V. Širokov. MR 0432634
- [EGA2] A. Grothendieck, Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math. 8 (1961), 222. MR 0217084
- [Ha] Robin Hartshorne, Residues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. MR 0222093
- [Hi] Vladimir Hinich, Homological algebra of homotopy algebras, Comm. Algebra 25 (1997), no. 10, 3291–3323. MR 1465117, https://doi.org/10.1080/00927879708826055
- [IENT] F. Castaño Iglesias, P. Enache, C. Năstăsescu, and B. Torrecillas, Un analogue du théorème de Gabriel-Popescu et applications, Bull. Sci. Math. 128 (2004), no. 4, 323–332 (French, with English and French summaries). MR 2052174, https://doi.org/10.1016/j.bulsci.2003.12.004
- [KS] Masaki Kashiwara and Pierre Schapira, Categories and sheaves, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 332, Springer-Verlag, Berlin, 2006. MR 2182076
- [K1] Bernhard Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 1, 63–102. MR 1258406
- [K2] Bernhard Keller, Derived categories and their uses, Handbook of algebra, Vol. 1, Handb. Algebr., vol. 1, Elsevier/North-Holland, Amsterdam, 1996, pp. 671–701. MR 1421815, https://doi.org/10.1016/S1570-7954(96)80023-4
- [Li] Joseph Lipman, Lectures on local cohomology and duality, Local cohomology and its applications (Guanajuato, 1999) Lecture Notes in Pure and Appl. Math., vol. 226, Dekker, New York, 2002, pp. 39–89. MR 1888195
- [Me] C. Menini, Gabriel-Popescu type theorems and graded modules, Perspectives in ring theory (Antwerp, 1987) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 233, Kluwer Acad. Publ., Dordrecht, 1988, pp. 239–251. MR 1048412
- [N1] Amnon Neeman, The connection between the 𝐾-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 5, 547–566. MR 1191736
- [N2] Amnon Neeman, The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), no. 1, 205–236. MR 1308405, https://doi.org/10.1090/S0894-0347-96-00174-9
- [N3] Amnon Neeman, Triangulated categories, Annals of Mathematics Studies, vol. 148, Princeton University Press, Princeton, NJ, 2001. MR 1812507
- [OSS] Christian Okonek, Michael Schneider, and Heinz Spindler, Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3, Birkhäuser, Boston, Mass., 1980. MR 561910
- [O1] D. O. Orlov, Equivalences of derived categories and 𝐾3 surfaces, J. Math. Sci. (New York) 84 (1997), no. 5, 1361–1381. Algebraic geometry, 7. MR 1465519, https://doi.org/10.1007/BF02399195
- [O2] D. O. Orlov, Derived categories of coherent sheaves and equivalences between them, Uspekhi Mat. Nauk 58 (2003), no. 3(351), 89–172 (Russian, with Russian summary); English transl., Russian Math. Surveys 58 (2003), no. 3, 511–591. MR 1998775, https://doi.org/10.1070/RM2003v058n03ABEH000629
- [Po] N. Popescu, Abelian categories with applications to rings and modules, Academic Press, London-New York, 1973. London Mathematical Society Monographs, No. 3. MR 0340375
- [Se] Jean-Pierre Serre, Faisceaux algébriques cohérents, Ann. of Math. (2) 61 (1955), 197–278 (French). MR 0068874, https://doi.org/10.2307/1969915
- [Sp] N. Spaltenstein, Resolutions of unbounded complexes, Compositio Math. 65 (1988), no. 2, 121–154. MR 932640
- [Ta] G. Tabuada, Théorie homotopique des DG-catégories, Thèse de l'Univ. Paris 7 (2007).
- [To] Bertrand Toën, The homotopy theory of 𝑑𝑔-categories and derived Morita theory, Invent. Math. 167 (2007), no. 3, 615–667. MR 2276263, https://doi.org/10.1007/s00222-006-0025-y
- [TT] R. W. Thomason and Thomas Trobaugh, Higher algebraic 𝐾-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 247–435. MR 1106918, https://doi.org/10.1007/978-0-8176-4576-2_10
- [Th] R. W. Thomason, The classification of triangulated subcategories, Compositio Math. 105 (1997), no. 1, 1–27. MR 1436741, https://doi.org/10.1023/A:1017932514274
Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 14F05, 18E30
Retrieve articles in all journals with MSC (2010): 14F05, 18E30
Additional Information
Valery A. Lunts
Affiliation:
Department of Mathematics, Indiana University, Bloomington, Indiana 47405
Email:
vlunts@indiana.edu
Dmitri O. Orlov
Affiliation:
Steklov Mathematical Institute, 8 Gubkina St., Moscow, Russia
Email:
orlov@mi.ras.ru
DOI:
https://doi.org/10.1090/S0894-0347-10-00664-8
Keywords:
Triangulated categories,
DG categories,
derived categories of sheaves
Received by editor(s):
September 5, 2009
Received by editor(s) in revised form:
December 14, 2009
Published electronically:
February 8, 2010
Additional Notes:
The first author was partially supported by the NSA grant H98230-05-1-0050
The second author was partially supported by grant RFFI 08-01-00297 and grant NSh-1987.2008.1
Article copyright:
© Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.


