Uniqueness of enhancement for triangulated categories
HTML articles powered by AMS MathViewer
- by Valery A. Lunts and Dmitri O. Orlov;
- J. Amer. Math. Soc. 23 (2010), 853-908
- DOI: https://doi.org/10.1090/S0894-0347-10-00664-8
- Published electronically: February 8, 2010
- PDF | Request permission
Abstract:
The paper contains general results on the uniqueness of a DG enhancement for triangulated categories. As a consequence we obtain such uniqueness for the unbounded derived categories of quasi-coherent sheaves, for the triangulated categories of perfect complexes, and for the bounded derived categories of coherent sheaves on quasi-projective schemes. If a scheme is projective, then we also prove a strong uniqueness for the triangulated category of perfect complexes and for the bounded derived categories of coherent sheaves. These results directly imply that fully faithful functors from the bounded derived categories of coherent sheaves and the triangulated categories of perfect complexes on projective schemes can be represented by objects on the product.References
- Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos, Lecture Notes in Mathematics, Vol. 269, Springer-Verlag, Berlin-New York, 1972 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4); Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. MR 354652
- M. R. Ballard, Equivalences of derived categories of sheaves on quasi-projective schemes, arXiv:0905.3148.
- Marcel Bökstedt and Amnon Neeman, Homotopy limits in triangulated categories, Compositio Math. 86 (1993), no. 2, 209–234. MR 1214458
- A. Bondal and M. van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1–36, 258 (English, with English and Russian summaries). MR 1996800, DOI 10.17323/1609-4514-2003-3-1-1-36
- A. I. Bondal and M. M. Kapranov, Framed triangulated categories, Mat. Sb. 181 (1990), no. 5, 669–683 (Russian); English transl., Math. USSR-Sb. 70 (1991), no. 1, 93–107. MR 1055981, DOI 10.1070/SM1991v070n01ABEH001253
- Alexey I. Bondal, Michael Larsen, and Valery A. Lunts, Grothendieck ring of pretriangulated categories, Int. Math. Res. Not. 29 (2004), 1461–1495. MR 2051435, DOI 10.1155/S1073792804140385
- Vladimir Drinfeld, DG quotients of DG categories, J. Algebra 272 (2004), no. 2, 643–691. MR 2028075, DOI 10.1016/j.jalgebra.2003.05.001
- Alexander I. Efimov, Valery A. Lunts, and Dmitri O. Orlov, Deformation theory of objects in homotopy and derived categories. I. General theory, Adv. Math. 222 (2009), no. 2, 359–401. MR 2538013, DOI 10.1016/j.aim.2009.03.021
- Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448 (French). MR 232821, DOI 10.24033/bsmf.1583
- A. Grotendik and Ž. A. D′edonne, Elements of algebraic topology, Uspehi Mat. Nauk 27 (1972), no. 2(164), 135–148 (Russian). MR 432634
- A. Grothendieck, Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math. 8 (1961), 222 (French). MR 217084
- Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR 222093, DOI 10.1007/BFb0080482
- Vladimir Hinich, Homological algebra of homotopy algebras, Comm. Algebra 25 (1997), no. 10, 3291–3323. MR 1465117, DOI 10.1080/00927879708826055
- F. Castaño Iglesias, P. Enache, C. Năstăsescu, and B. Torrecillas, Un analogue du théorème de Gabriel-Popescu et applications, Bull. Sci. Math. 128 (2004), no. 4, 323–332 (French, with English and French summaries). MR 2052174, DOI 10.1016/j.bulsci.2003.12.004
- Masaki Kashiwara and Pierre Schapira, Categories and sheaves, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 332, Springer-Verlag, Berlin, 2006. MR 2182076, DOI 10.1007/3-540-27950-4
- Bernhard Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 1, 63–102. MR 1258406, DOI 10.24033/asens.1689
- Bernhard Keller, Derived categories and their uses, Handbook of algebra, Vol. 1, Handb. Algebr., vol. 1, Elsevier/North-Holland, Amsterdam, 1996, pp. 671–701. MR 1421815, DOI 10.1016/S1570-7954(96)80023-4
- Joseph Lipman, Lectures on local cohomology and duality, Local cohomology and its applications (Guanajuato, 1999) Lecture Notes in Pure and Appl. Math., vol. 226, Dekker, New York, 2002, pp. 39–89. MR 1888195
- C. Menini, Gabriel-Popescu type theorems and graded modules, Perspectives in ring theory (Antwerp, 1987) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 233, Kluwer Acad. Publ., Dordrecht, 1988, pp. 239–251. MR 1048412
- Amnon Neeman, The connection between the $K$-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 5, 547–566. MR 1191736, DOI 10.24033/asens.1659
- Amnon Neeman, The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), no. 1, 205–236. MR 1308405, DOI 10.1090/S0894-0347-96-00174-9
- Amnon Neeman, Triangulated categories, Annals of Mathematics Studies, vol. 148, Princeton University Press, Princeton, NJ, 2001. MR 1812507, DOI 10.1515/9781400837212
- Christian Okonek, Michael Schneider, and Heinz Spindler, Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3, Birkhäuser, Boston, MA, 1980. MR 561910
- D. O. Orlov, Equivalences of derived categories and $K3$ surfaces, J. Math. Sci. (New York) 84 (1997), no. 5, 1361–1381. Algebraic geometry, 7. MR 1465519, DOI 10.1007/BF02399195
- D. O. Orlov, Derived categories of coherent sheaves and equivalences between them, Uspekhi Mat. Nauk 58 (2003), no. 3(351), 89–172 (Russian, with Russian summary); English transl., Russian Math. Surveys 58 (2003), no. 3, 511–591. MR 1998775, DOI 10.1070/RM2003v058n03ABEH000629
- N. Popescu, Abelian categories with applications to rings and modules, London Mathematical Society Monographs, No. 3, Academic Press, London-New York, 1973. MR 340375
- Jean-Pierre Serre, Faisceaux algébriques cohérents, Ann. of Math. (2) 61 (1955), 197–278 (French). MR 68874, DOI 10.2307/1969915
- N. Spaltenstein, Resolutions of unbounded complexes, Compositio Math. 65 (1988), no. 2, 121–154. MR 932640
- G. Tabuada, Théorie homotopique des DG-catégories, Thèse de l’Univ. Paris 7 (2007).
- Bertrand Toën, The homotopy theory of $dg$-categories and derived Morita theory, Invent. Math. 167 (2007), no. 3, 615–667. MR 2276263, DOI 10.1007/s00222-006-0025-y
- R. W. Thomason and Thomas Trobaugh, Higher algebraic $K$-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 247–435. MR 1106918, DOI 10.1007/978-0-8176-4576-2_{1}0
- R. W. Thomason, The classification of triangulated subcategories, Compositio Math. 105 (1997), no. 1, 1–27. MR 1436741, DOI 10.1023/A:1017932514274
Bibliographic Information
- Valery A. Lunts
- Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405
- MR Author ID: 265625
- Email: vlunts@indiana.edu
- Dmitri O. Orlov
- Affiliation: Steklov Mathematical Institute, 8 Gubkina St., Moscow, Russia
- Email: orlov@mi.ras.ru
- Received by editor(s): September 5, 2009
- Received by editor(s) in revised form: December 14, 2009
- Published electronically: February 8, 2010
- Additional Notes: The first author was partially supported by the NSA grant H98230-05-1-0050
The second author was partially supported by grant RFFI 08-01-00297 and grant NSh-1987.2008.1 - © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 23 (2010), 853-908
- MSC (2010): Primary 14F05, 18E30
- DOI: https://doi.org/10.1090/S0894-0347-10-00664-8
- MathSciNet review: 2629991