Massey products for elliptic curves of rank $1$
HTML articles powered by AMS MathViewer
- by Minhyong Kim;
- J. Amer. Math. Soc. 23 (2010), 725-747
- DOI: https://doi.org/10.1090/S0894-0347-10-00665-X
- Published electronically: March 12, 2010
- PDF | Request permission
Erratum: J. Amer. Math. Soc. 24 (2011), 281-291.
Abstract:
For an elliptic curve over $\mathbb {Q}$ of rank 1, integral $j$-invariant, and suitable finiteness in the Tate-Shafarevich group, we use the level-two Selmer variety and secondary cohomology products to find explicit analytic defining equations for global integral points inside the set of $p$-adic points.References
- Massimo Bertolini and Henri Darmon, Hida families and rational points on elliptic curves, Invent. Math. 168 (2007), no. 2, 371–431. MR 2289868, DOI 10.1007/s00222-007-0035-4
- Amnon Besser and Hidekazu Furusho, The double shuffle relations for $p$-adic multiple zeta values, Primes and knots, Contemp. Math., vol. 416, Amer. Math. Soc., Providence, RI, 2006, pp. 9–29. MR 2276133, DOI 10.1090/conm/416/07884
- Spencer Bloch and Kazuya Kato, $L$-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 333–400. MR 1086888
- Coates, John; Kim, Minhyong, Selmer varieties for curves with CM Jacobians. Submitted. Available at the mathematics archive, arXiv:0810.3354 .
- P. Deligne, Le groupe fondamental de la droite projective moins trois points, Galois groups over $\textbf {Q}$ (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 16, Springer, New York, 1989, pp. 79–297 (French). MR 1012168, DOI 10.1007/978-1-4613-9649-9_{3}
- Pierre Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, Vol. 163, Springer-Verlag, Berlin-New York, 1970 (French). MR 417174, DOI 10.1007/BFb0061194
- Christopher Deninger, Higher order operations in Deligne cohomology, Invent. Math. 120 (1995), no. 2, 289–315. MR 1329043, DOI 10.1007/BF01241130
- Jean-Marc Fontaine, Sur certains types de représentations $p$-adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti-Tate, Ann. of Math. (2) 115 (1982), no. 3, 529–577 (French). MR 657238, DOI 10.2307/2007012
- William M. Goldman and John J. Millson, The deformation theory of representations of fundamental groups of compact Kähler manifolds, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 43–96. MR 972343, DOI 10.1007/BF02699127
- Hidekazu Furusho, $p$-adic multiple zeta values. I. $p$-adic multiple polylogarithms and the $p$-adic KZ equation, Invent. Math. 155 (2004), no. 2, 253–286. MR 2031428, DOI 10.1007/s00222-003-0320-9
- Richard M. Hain, The de Rham homotopy theory of complex algebraic varieties. I, $K$-Theory 1 (1987), no. 3, 271–324. MR 908993, DOI 10.1007/BF00533825
- Richard Hain, Iterated integrals and algebraic cycles: examples and prospects, Contemporary trends in algebraic geometry and algebraic topology (Tianjin, 2000) Nankai Tracts Math., vol. 5, World Sci. Publ., River Edge, NJ, 2002, pp. 55–118. MR 1945356, DOI 10.1142/9789812777416_{0}004
- Richard Hain, Periods of limit mixed Hodge structures, Current developments in mathematics, 2002, Int. Press, Somerville, MA, 2003, pp. 113–133. MR 2059020
- Richard M. Hain and Steven Zucker, Unipotent variations of mixed Hodge structure, Invent. Math. 88 (1987), no. 1, 83–124. MR 877008, DOI 10.1007/BF01405093
- Kazuya Kato, Lectures on the approach to Iwasawa theory for Hasse-Weil $L$-functions via $B_\textrm {dR}$. I, Arithmetic algebraic geometry (Trento, 1991) Lecture Notes in Math., vol. 1553, Springer, Berlin, 1993, pp. 50–163. MR 1338860, DOI 10.1007/BFb0084729
- Minhyong Kim, The motivic fundamental group of $\mathbf P^1\sbs \{0,1,\infty \}$ and the theorem of Siegel, Invent. Math. 161 (2005), no. 3, 629–656. MR 2181717, DOI 10.1007/s00222-004-0433-9
- Minhyong Kim, The unipotent Albanese map and Selmer varieties for curves, Publ. Res. Inst. Math. Sci. 45 (2009), no. 1, 89–133. MR 2512779, DOI 10.2977/prims/1234361156
- Kim, Minhyong, Remark on fundamental groups and effective Diophantine methods for hyperbolic curves. To be published in Serge Lang memorial volume. Available at mathematics archive, arXiv:0708.1115.
- Kim, Minhyong, $p$-adic $L$-functions and Selmer varieties associated to elliptic curves with complex multiplication. Annals of Math. (to be published). Available at mathematics archive: arXiv:0710.5290 (math.AG)
- Minhyong Kim and Akio Tamagawa, The $l$-component of the unipotent Albanese map, Math. Ann. 340 (2008), no. 1, 223–235. MR 2349775, DOI 10.1007/s00208-007-0151-x
- Minhyong Kim and Richard M. Hain, A de Rham-Witt approach to crystalline rational homotopy theory, Compos. Math. 140 (2004), no. 5, 1245–1276. MR 2081156, DOI 10.1112/S0010437X04000442
- Victor Alecsandrovich Kolyvagin, On the Mordell-Weil group and the Shafarevich-Tate group of modular elliptic curves, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 429–436. MR 1159231
- V. Navarro Aznar, Sur la théorie de Hodge-Deligne, Invent. Math. 90 (1987), no. 1, 11–76 (French). MR 906579, DOI 10.1007/BF01389031
- Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2008. MR 2392026, DOI 10.1007/978-3-540-37889-1
- Olsson, Martin, Towards non-abelian $p$-adic Hodge theory in the good reduction case. Preprint. Available at http://math.berkeley.edu/˜molsson/.
- Olsson, Martin, The bar construction and affine stacks. Preprint. Available at http://math.berkeley.edu/˜molsson/.
- Romyar T. Sharifi, Massey products and ideal class groups, J. Reine Angew. Math. 603 (2007), 1–33. MR 2312552, DOI 10.1515/CRELLE.2007.010
- Zdzisław Wojtkowiak, Cosimplicial objects in algebraic geometry, Algebraic $K$-theory and algebraic topology (Lake Louise, AB, 1991) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 407, Kluwer Acad. Publ., Dordrecht, 1993, pp. 287–327. MR 1367304, DOI 10.1007/978-94-017-0695-7_{1}5
Bibliographic Information
- Minhyong Kim
- Affiliation: Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, United Kingdom and The Korea Institute for Advanced Study, Hoegiro 87, Dongdaemun-gu, Seoul 130-722, Korea
- Received by editor(s): February 24, 2009
- Received by editor(s) in revised form: January 3, 2010
- Published electronically: March 12, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 23 (2010), 725-747
- MSC (2010): Primary 11G05
- DOI: https://doi.org/10.1090/S0894-0347-10-00665-X
- MathSciNet review: 2629986