$\mathcal {B}(\ell ^p)$ is never amenable
Author:
Volker Runde
Journal:
J. Amer. Math. Soc. 23 (2010), 1175-1185
MSC (2010):
Primary 47L10; Secondary 46B07, 46B45, 46H20
DOI:
https://doi.org/10.1090/S0894-0347-10-00668-5
Published electronically:
March 26, 2010
MathSciNet review:
2669711
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We show that if $E$ is a Banach space with a basis satisfying a certain condition, then the Banach algebra $\ell ^\infty ({\mathcal K}(\ell ^2 \oplus E))$ is not amenable; in particular, this is true for $E = \ell ^p$ with $p \in (1,\infty )$. As a consequence, $\ell ^\infty ({\mathcal K}(E))$ is not amenable for any infinite-dimensional ${\mathcal L}^p$-space. This, in turn, entails the non-amenability of ${\mathcal B}(\ell ^p(E))$ for any ${\mathcal L}^p$-space $E$, so that, in particular, ${\mathcal B}(\ell ^p)$ and ${\mathcal B}(L^p[0,1])$ are not amenable.
- S. A. Argyros and R. G. Haydon, A hereditarily indecomposable $\mathcal {L}_\infty$-space that solves the scalar-plus-compact problem. arXiv:0903.3921.
- Bachir Bekka, Pierre de la Harpe, and Alain Valette, Kazhdan’s property (T), New Mathematical Monographs, vol. 11, Cambridge University Press, Cambridge, 2008. MR 2415834
- Matthew Daws and Volker Runde, Can ${\scr B}(l^p)$ ever be amenable?, Studia Math. 188 (2008), no. 2, 151–174. MR 2431000, DOI https://doi.org/10.4064/sm188-2-4
- Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995. MR 1342297
- Yehoram Gordon, On $p$-absolutely summing constants of Banach spaces, Israel J. Math. 7 (1969), 151–163. MR 250028, DOI https://doi.org/10.1007/BF02771662
- N. Grønbæk, B. E. Johnson, and G. A. Willis, Amenability of Banach algebras of compact operators, Israel J. Math. 87 (1994), no. 1-3, 289–324. MR 1286832, DOI https://doi.org/10.1007/BF02773000
- A. Ya. Helemskii, The homology of Banach and topological algebras, Mathematics and its Applications (Soviet Series), vol. 41, Kluwer Academic Publishers Group, Dordrecht, 1989. Translated from the Russian by Alan West. MR 1093462
- Barry Edward Johnson, Cohomology in Banach algebras, American Mathematical Society, Providence, R.I., 1972. Memoirs of the American Mathematical Society, No. 127. MR 0374934
- B. E. Johnson, Approximate diagonals and cohomology of certain annihilator Banach algebras, Amer. J. Math. 94 (1972), 685–698. MR 317050, DOI https://doi.org/10.2307/2373751
- J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in $L_{p}$-spaces and their applications, Studia Math. 29 (1968), 275–326. MR 231188, DOI https://doi.org/10.4064/sm-29-3-275-326
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Springer-Verlag, Berlin-New York, 1977. Sequence spaces; Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. MR 0500056
- Narutaka Ozawa, A note on non-amenability of ${\scr B}(l_p)$ for $p=1,2$, Internat. J. Math. 15 (2004), no. 6, 557–565. MR 2078880, DOI https://doi.org/10.1142/S0129167X04002430
- G. Pisier, On Read’s proof that $B(l_1)$ is not amenable, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 1850, Springer, Berlin, 2004, pp. 269–275. MR 2087163, DOI https://doi.org/10.1007/978-3-540-44489-3_20
- C. J. Read, Commutative, radical amenable Banach algebras, Studia Math. 140 (2000), no. 3, 199–212. MR 1784151, DOI https://doi.org/10.4064/sm-140-3-199-212
- C. J. Read, Relative amenability and the non-amenability of $B(l^1)$, J. Aust. Math. Soc. 80 (2006), no. 3, 317–333. MR 2236040, DOI https://doi.org/10.1017/S1446788700014038
- Volker Runde, The structure of contractible and amenable Banach algebras, Banach algebras ’97 (Blaubeuren), de Gruyter, Berlin, 1998, pp. 415–430. MR 1656619
- Volker Runde, Lectures on amenability, Lecture Notes in Mathematics, vol. 1774, Springer-Verlag, Berlin, 2002. MR 1874893
- Nicole Tomczak-Jaegermann, Banach-Mazur distances and finite-dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 993774
- Simon Wassermann, On tensor products of certain group $C^{\ast } $-algebras, J. Functional Analysis 23 (1976), no. 3, 239–254. MR 0425628, DOI https://doi.org/10.1016/0022-1236%2876%2990050-1
- P. Wojtaszczyk, Banach spaces for analysts, Cambridge Studies in Advanced Mathematics, vol. 25, Cambridge University Press, Cambridge, 1991. MR 1144277
Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 47L10, 46B07, 46B45, 46H20
Retrieve articles in all journals with MSC (2010): 47L10, 46B07, 46B45, 46H20
Additional Information
Volker Runde
Affiliation:
Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
Email:
vrunde@ualberta.ca
Keywords:
Amenability,
Kazhdan’s property $(T)$,
${\mathcal L}^p$-spaces
Received by editor(s):
July 4, 2009
Received by editor(s) in revised form:
December 5, 2009, December 7, 2009, and December 8, 2009
Published electronically:
March 26, 2010
Additional Notes:
The author’s research was supported by NSERC
Article copyright:
© Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.