$\mathcal {B}(\ell ^p)$ is never amenable
HTML articles powered by AMS MathViewer
- by Volker Runde;
- J. Amer. Math. Soc. 23 (2010), 1175-1185
- DOI: https://doi.org/10.1090/S0894-0347-10-00668-5
- Published electronically: March 26, 2010
- PDF | Request permission
Abstract:
We show that if $E$ is a Banach space with a basis satisfying a certain condition, then the Banach algebra $\ell ^\infty ({\mathcal K}(\ell ^2 \oplus E))$ is not amenable; in particular, this is true for $E = \ell ^p$ with $p \in (1,\infty )$. As a consequence, $\ell ^\infty ({\mathcal K}(E))$ is not amenable for any infinite-dimensional ${\mathcal L}^p$-space. This, in turn, entails the non-amenability of ${\mathcal B}(\ell ^p(E))$ for any ${\mathcal L}^p$-space $E$, so that, in particular, ${\mathcal B}(\ell ^p)$ and ${\mathcal B}(L^p[0,1])$ are not amenable.References
- S. A. Argyros and R. G. Haydon, A hereditarily indecomposable $\mathcal {L}_\infty$-space that solves the scalar-plus-compact problem. arXiv:0903.3921.
- Bachir Bekka, Pierre de la Harpe, and Alain Valette, Kazhdan’s property (T), New Mathematical Monographs, vol. 11, Cambridge University Press, Cambridge, 2008. MR 2415834, DOI 10.1017/CBO9780511542749
- Matthew Daws and Volker Runde, Can ${\scr B}(l^p)$ ever be amenable?, Studia Math. 188 (2008), no. 2, 151–174. MR 2431000, DOI 10.4064/sm188-2-4
- Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995. MR 1342297, DOI 10.1017/CBO9780511526138
- Yehoram Gordon, On $p$-absolutely summing constants of Banach spaces, Israel J. Math. 7 (1969), 151–163. MR 250028, DOI 10.1007/BF02771662
- N. Grønbæk, B. E. Johnson, and G. A. Willis, Amenability of Banach algebras of compact operators, Israel J. Math. 87 (1994), no. 1-3, 289–324. MR 1286832, DOI 10.1007/BF02773000
- A. Ya. Helemskii, The homology of Banach and topological algebras, Mathematics and its Applications (Soviet Series), vol. 41, Kluwer Academic Publishers Group, Dordrecht, 1989. Translated from the Russian by Alan West. MR 1093462, DOI 10.1007/978-94-009-2354-6
- Barry Edward Johnson, Cohomology in Banach algebras, Memoirs of the American Mathematical Society, No. 127, American Mathematical Society, Providence, RI, 1972. MR 374934
- B. E. Johnson, Approximate diagonals and cohomology of certain annihilator Banach algebras, Amer. J. Math. 94 (1972), 685–698. MR 317050, DOI 10.2307/2373751
- J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in $L_{p}$-spaces and their applications, Studia Math. 29 (1968), 275–326. MR 231188, DOI 10.4064/sm-29-3-275-326
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 500056, DOI 10.1007/978-3-642-66557-8
- Narutaka Ozawa, A note on non-amenability of ${\scr B}(l_p)$ for $p=1,2$, Internat. J. Math. 15 (2004), no. 6, 557–565. MR 2078880, DOI 10.1142/S0129167X04002430
- G. Pisier, On Read’s proof that $B(l_1)$ is not amenable, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 1850, Springer, Berlin, 2004, pp. 269–275. MR 2087163, DOI 10.1007/978-3-540-44489-3_{2}0
- C. J. Read, Commutative, radical amenable Banach algebras, Studia Math. 140 (2000), no. 3, 199–212. MR 1784151, DOI 10.4064/sm-140-3-199-212
- C. J. Read, Relative amenability and the non-amenability of $B(l^1)$, J. Aust. Math. Soc. 80 (2006), no. 3, 317–333. MR 2236040, DOI 10.1017/S1446788700014038
- Volker Runde, The structure of contractible and amenable Banach algebras, Banach algebras ’97 (Blaubeuren), de Gruyter, Berlin, 1998, pp. 415–430. MR 1656619
- Volker Runde, Lectures on amenability, Lecture Notes in Mathematics, vol. 1774, Springer-Verlag, Berlin, 2002. MR 1874893, DOI 10.1007/b82937
- Nicole Tomczak-Jaegermann, Banach-Mazur distances and finite-dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 993774
- Simon Wassermann, On tensor products of certain group $C^{\ast }$-algebras, J. Functional Analysis 23 (1976), no. 3, 239–254. MR 425628, DOI 10.1016/0022-1236(76)90050-1
- P. Wojtaszczyk, Banach spaces for analysts, Cambridge Studies in Advanced Mathematics, vol. 25, Cambridge University Press, Cambridge, 1991. MR 1144277, DOI 10.1017/CBO9780511608735
Bibliographic Information
- Volker Runde
- Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
- Email: vrunde@ualberta.ca
- Received by editor(s): July 4, 2009
- Received by editor(s) in revised form: December 5, 2009, December 7, 2009, and December 8, 2009
- Published electronically: March 26, 2010
- Additional Notes: The author’s research was supported by NSERC
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 23 (2010), 1175-1185
- MSC (2010): Primary 47L10; Secondary 46B07, 46B45, 46H20
- DOI: https://doi.org/10.1090/S0894-0347-10-00668-5
- MathSciNet review: 2669711