Integral transforms and Drinfeld centers in derived algebraic geometry
Authors:
David Ben-Zvi, John Francis and David Nadler
Journal:
J. Amer. Math. Soc. 23 (2010), 909-966
MSC (2010):
Primary 14-XX; Secondary 55-XX
DOI:
https://doi.org/10.1090/S0894-0347-10-00669-7
Published electronically:
April 1, 2010
MathSciNet review:
2669705
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We study the interaction between geometric operations on stacks and algebraic operations on their categories of sheaves. We work in the general setting of derived algebraic geometry: our basic objects are derived stacks
and their
-categories
of quasi-coherent sheaves. (When
is a familiar scheme or stack,
is an enriched version of the usual quasi-coherent derived category
.) We show that for a broad class of derived stacks, called perfect stacks, algebraic and geometric operations on their categories of sheaves are compatible. We identify the category of sheaves on a fiber product with the tensor product of the categories of sheaves on the factors. We also identify the category of sheaves on a fiber product with functors between the categories of sheaves on the factors (thus realizing functors as integral transforms, generalizing a theorem of Toën for ordinary schemes). As a first application, for a perfect stack
, consider
with its usual monoidal tensor product. Then our main results imply the equivalence of the Drinfeld center (or Hochschild cohomology category) of
, the trace (or Hochschild homology category) of
and the category of sheaves on the loop space of
. More generally, we show that the
-center and the
-trace (or
-Hochschild cohomology and homology categories, respectively) of
are equivalent to the category of sheaves on the space of maps from the
-sphere into
. This directly verifies geometric instances of the categorified Deligne and Kontsevich conjectures on the structure of Hochschild cohomology. As a second application, we use our main results to calculate the Drinfeld center of categories of linear endofunctors of categories of sheaves. This provides concrete applications to the structure of Hecke algebras in geometric representation theory. Finally, we explain how the above results can be interpreted in the context of topological field theory.
- [A] Vigleik Angeltveit, The cyclic bar construction on 𝐴_{∞} 𝐻-spaces, Adv. Math. 222 (2009), no. 5, 1589–1610. MR 2555906, https://doi.org/10.1016/j.aim.2009.06.007
- [BK] Bojko Bakalov and Alexander Kirillov Jr., Lectures on tensor categories and modular functors, University Lecture Series, vol. 21, American Mathematical Society, Providence, RI, 2001. MR 1797619
- [BN1] D. Ben-Zvi and D. Nadler, Loop Spaces and Connections. arXiv:1002.3636.
- [BN2] D. Ben-Zvi and D. Nadler, The character theory of a complex group. arXiv:0904.1247.
- [Ber]
J. Bergner, A survey of
-categories. arXiv:math/0610239.
- [Be] Roman Bezrukavnikov, Noncommutative counterparts of the Springer resolution, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1119–1144. MR 2275638
- [BeF] Roman Bezrukavnikov and Michael Finkelberg, Equivariant Satake category and Kostant-Whittaker reduction, Mosc. Math. J. 8 (2008), no. 1, 39–72, 183 (English, with English and Russian summaries). MR 2422266
- [Bo] M. Bökstedt, Topological Hochschild Homology. Preprint, 1985.
- [BoN] Marcel Bökstedt and Amnon Neeman, Homotopy limits in triangulated categories, Compositio Math. 86 (1993), no. 2, 209–234. MR 1214458
- [BLL] Alexey I. Bondal, Michael Larsen, and Valery A. Lunts, Grothendieck ring of pretriangulated categories, Int. Math. Res. Not. 29 (2004), 1461–1495. MR 2051435, https://doi.org/10.1155/S1073792804140385
- [BV] A. Bondal and M. van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1–36, 258 (English, with English and Russian summaries). MR 1996800
- [Ch] Claude Chevalley, Théorie des groupes de Lie. Tome II. Groupes algébriques, Actualités Sci. Ind. no. 1152, Hermann & Cie., Paris, 1951 (French). MR 0051242
- [C] Kevin Costello, Topological conformal field theories and Calabi-Yau categories, Adv. Math. 210 (2007), no. 1, 165–214. MR 2298823, https://doi.org/10.1016/j.aim.2006.06.004
- [De] P. Deligne, Catégories tannakiennes, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 111–195 (French). MR 1106898
- [D] Vladimir Drinfeld, DG quotients of DG categories, J. Algebra 272 (2004), no. 2, 643–691. MR 2028075, https://doi.org/10.1016/j.jalgebra.2003.05.001
- [EKMM] A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May, Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs, vol. 47, American Mathematical Society, Providence, RI, 1997. With an appendix by M. Cole. MR 1417719
- [F1]
J. Francis, Derived algebraic geometry over
-rings. MIT Ph.D. thesis, 2008.
- [F2]
J. Francis, The cotangent complex and Hochschild homology of
-rings. In preparation.
- [Fr] Daniel S. Freed, Higher algebraic structures and quantization, Comm. Math. Phys. 159 (1994), no. 2, 343–398. MR 1256993
- [H] Vladimir Hinich, Drinfeld double for orbifolds, Quantum groups, Contemp. Math., vol. 433, Amer. Math. Soc., Providence, RI, 2007, pp. 251–265. MR 2349625, https://doi.org/10.1090/conm/433/08329
- [HS]
A. Hirschowitz and C. Simpson, Descente pour les
-champs. arXiv:math/9807049.
- [HPS] Mark Hovey, John H. Palmieri, and Neil P. Strickland, Axiomatic stable homotopy theory, Mem. Amer. Math. Soc. 128 (1997), no. 610, x+114. MR 1388895, https://doi.org/10.1090/memo/0610
- [HSS] Mark Hovey, Brooke Shipley, and Jeff Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000), no. 1, 149–208. MR 1695653, https://doi.org/10.1090/S0894-0347-99-00320-3
- [HKV] Po Hu, Igor Kriz, and Alexander A. Voronov, On Kontsevich’s Hochschild cohomology conjecture, Compos. Math. 142 (2006), no. 1, 143–168. MR 2197407, https://doi.org/10.1112/S0010437X05001521
- [Jo] A. Joyal, Quasi-categories and Kan complexes, J. Pure Appl. Algebra 175 (2002), no. 1-3, 207–222. Special volume celebrating the 70th birthday of Professor Max Kelly. MR 1935979, https://doi.org/10.1016/S0022-4049(02)00135-4
- [JS] André Joyal and Ross Street, Tortile Yang-Baxter operators in tensor categories, J. Pure Appl. Algebra 71 (1991), no. 1, 43–51. MR 1107651, https://doi.org/10.1016/0022-4049(91)90039-5
- [Kap] M. Kapranov, Rozansky-Witten invariants via Atiyah classes, Compositio Math. 115 (1999), no. 1, 71–113. MR 1671737, https://doi.org/10.1023/A:1000664527238
- [KRS] Anton Kapustin, Lev Rozansky, and Natalia Saulina, Three-dimensional topological field theory and symplectic algebraic geometry. I, Nuclear Phys. B 816 (2009), no. 3, 295–355. MR 2522724, https://doi.org/10.1016/j.nuclphysb.2009.01.027
- [Kau] Ralph M. Kaufmann, A proof of a cyclic version of Deligne’s conjecture via cacti, Math. Res. Lett. 15 (2008), no. 5, 901–921. MR 2443991, https://doi.org/10.4310/MRL.2008.v15.n5.a7
- [Ke] Bernhard Keller, On differential graded categories, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 151–190. MR 2275593
- [K1] Maxim Kontsevich, Operads and motives in deformation quantization, Lett. Math. Phys. 48 (1999), no. 1, 35–72. Moshé Flato (1937–1998). MR 1718044, https://doi.org/10.1023/A:1007555725247
- [K2] Maxim Kontsevich, Rozansky-Witten invariants via formal geometry, Compositio Math. 115 (1999), no. 1, 115–127. MR 1671725, https://doi.org/10.1023/A:1000619911308
- [KS1] Maxim Kontsevich and Yan Soibelman, Deformations of algebras over operads and the Deligne conjecture, Conférence Moshé Flato 1999, Vol. I (Dijon), Math. Phys. Stud., vol. 21, Kluwer Acad. Publ., Dordrecht, 2000, pp. 255–307. MR 1805894
- [KS2] M. Kontsevich and Y. Soibelman, Notes on A-infinity algebras, A-infinity categories and non-commutative geometry I. Preprint arXiv:math/0606241.
- [LMS] L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. MR 866482
- [L1] J. Lurie, Derived Algebraic Geometry, MIT Ph.D. Thesis, 2004.
- [L2] Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659
- [L3] J. Lurie, Derived Algebraic Geometry 1: Stable infinity categories. arXiv:math.CT/ 0608228.
- [L4] J. Lurie, Derived Algebraic Geometry 2: Noncommutative algebra. arXiv:math.CT/ 0702299.
- [L5] J. Lurie, Derived Algebraic Geometry 3: Commutative algebra. arXiv:math.CT/ 0703204.
- [L6] Jacob Lurie, On the classification of topological field theories, Current developments in mathematics, 2008, Int. Press, Somerville, MA, 2009, pp. 129–280. MR 2555928
- [L7]
J. Lurie, Derived Algebraic Geometry 6:
Algebras. arXiv:0911.0018.
- [MS] James E. McClure and Jeffrey H. Smith, A solution of Deligne’s Hochschild cohomology conjecture, Recent progress in homotopy theory (Baltimore, MD, 2000) Contemp. Math., vol. 293, Amer. Math. Soc., Providence, RI, 2002, pp. 153–193. MR 1890736, https://doi.org/10.1090/conm/293/04948
- [M] Michael Müger, From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors, J. Pure Appl. Algebra 180 (2003), no. 1-2, 159–219. MR 1966525, https://doi.org/10.1016/S0022-4049(02)00248-7
- [N1] Amnon Neeman, The connection between the 𝐾-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 5, 547–566. MR 1191736
- [N2] Amnon Neeman, The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), no. 1, 205–236. MR 1308405, https://doi.org/10.1090/S0894-0347-96-00174-9
- [N3] Amnon Neeman, Triangulated categories, Annals of Mathematics Studies, vol. 148, Princeton University Press, Princeton, NJ, 2001. MR 1812507
- [O] D. O. Orlov, Equivalences of derived categories and 𝐾3 surfaces, J. Math. Sci. (New York) 84 (1997), no. 5, 1361–1381. Algebraic geometry, 7. MR 1465519, https://doi.org/10.1007/BF02399195
- [Os] Viktor Ostrik, Module categories over the Drinfeld double of a finite group, Int. Math. Res. Not. 27 (2003), 1507–1520. MR 1976233, https://doi.org/10.1155/S1073792803205079
- [RobW] J. Roberts and S. Willerton, On the Rozansky-Witten weight systems. math.AG/ 0602653.
- [RW] L. Rozansky and E. Witten, Hyper-Kähler geometry and invariants of three-manifolds, Selecta Math. (N.S.) 3 (1997), no. 3, 401–458. MR 1481135, https://doi.org/10.1007/s000290050016
- [SSh] Stefan Schwede and Brooke Shipley, Stable model categories are categories of modules, Topology 42 (2003), no. 1, 103–153. MR 1928647, https://doi.org/10.1016/S0040-9383(02)00006-X
- [Sh] Brooke Shipley, 𝐻ℤ-algebra spectra are differential graded algebras, Amer. J. Math. 129 (2007), no. 2, 351–379. MR 2306038, https://doi.org/10.1353/ajm.2007.0014
- [T1] D. Tamarkin, Another proof of M. Kontsevich formality theorem. arXiv:math/9803025.
- [T2]
D. Tamarkin, The deformation complex of a
-algebra is a
-algebra. arXiv:math/ 0010072.
- [TT] R. W. Thomason and Thomas Trobaugh, Higher algebraic 𝐾-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 247–435. MR 1106918, https://doi.org/10.1007/978-0-8176-4576-2_10
- [To1] Bertrand Toën, The homotopy theory of 𝑑𝑔-categories and derived Morita theory, Invent. Math. 167 (2007), no. 3, 615–667. MR 2276263, https://doi.org/10.1007/s00222-006-0025-y
- [To2] Bertrand Toën, Higher and derived stacks: a global overview, Algebraic geometry—Seattle 2005. Part 1, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., Providence, RI, 2009, pp. 435–487. MR 2483943, https://doi.org/10.1090/pspum/080.1/2483943
- [ToVe1] Bertrand Toën and Gabriele Vezzosi, Homotopical algebraic geometry. I. Topos theory, Adv. Math. 193 (2005), no. 2, 257–372. MR 2137288, https://doi.org/10.1016/j.aim.2004.05.004
- [ToVe2] Bertrand Toën and Gabriele Vezzosi, Homotopical algebraic geometry. II. Geometric stacks and applications, Mem. Amer. Math. Soc. 193 (2008), no. 902, x+224. MR 2394633, https://doi.org/10.1090/memo/0902
- [TZ] Thomas Tradler and Mahmoud Zeinalian, On the cyclic Deligne conjecture, J. Pure Appl. Algebra 204 (2006), no. 2, 280–299. MR 2184812, https://doi.org/10.1016/j.jpaa.2005.04.009
Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 14-XX, 55-XX
Retrieve articles in all journals with MSC (2010): 14-XX, 55-XX
Additional Information
David Ben-Zvi
Affiliation:
Department of Mathematics, University of Texas, Austin, Texas 78712-0257
Email:
benzvi@math.utexas.edu
John Francis
Affiliation:
Department of Mathematics, Northwestern University, Evanston, Illinois 60208-2370
Email:
jnkf@math.northwestern.edu
David Nadler
Affiliation:
Department of Mathematics, Northwestern University, Evanston, Illinois 60208-2370
Email:
nadler@math.northwestern.edu
DOI:
https://doi.org/10.1090/S0894-0347-10-00669-7
Received by editor(s):
October 23, 2008
Received by editor(s) in revised form:
March 4, 2010
Published electronically:
April 1, 2010
Article copyright:
© Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.


