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1014 A. KLEMM, D. MAULIK, R. PANDHARIPANDE, AND E. SCHEIDEGGER

0. Introduction

0.1. Yau-Zaslow conjecture. Let S be a nonsingular projective K3 surface, and
let

β ∈ Pic(S) = H2(S,Z) ∩H1,1(S,C)

be a nonzero effective curve class. The moduli space M0(S, β) of genus 0 stable
maps (with no marked points) has the expected dimension

dimvir
C

(
M0(S, β)

)
=

∫
β

c1(S) + dimC(S)− 3 = −1.

Hence, the virtual class [M0(S, β)]
vir vanishes, and the standard Gromov-Witten

theory is trivial.
Curve counting on K3 surfaces is captured instead by the reduced Gromov-

Witten theory constructed first via the twistor family in [6]. An algebraic construc-
tion following [1, 2] is given in [31]. Since the reduced class

[M0(S, β)]
red ∈ H0(M0(S, β),Q)

has dimension 0, the reduced Gromov-Witten integrals of S,

(1) R0,β(S) =

∫
[M0(S,β)]red

1 ∈ Q,

are well-defined. For deformations of S for which β remains a (1, 1)-class, the
integrals (1) are invariant.

The second cohomology of S is a rank 22 lattice with intersection form

(2) H2(S,Z)
∼
= U ⊕ U ⊕ U ⊕ E8(−1)⊕ E8(−1),

where

U =

(
0 1
1 0

)
and

E8(−1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 0 1 0 0 0 0 0
0 −2 0 1 0 0 0 0
1 0 −2 1 0 0 0 0
0 1 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 1
0 0 0 0 0 0 1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is the (negative) Cartan matrix. The intersection form (2) is even.

The divisibility m(β) is the maximal positive integer dividing the lattice element
β ∈ H2(S,Z). If the divisibility is 1, β is primitive. Elements with equal divisi-
bility and norm are equivalent up to orthogonal transformations of H2(S,Z). By
straightforward deformation arguments using the Torelli theorem for K3 surfaces,
R0,β(S) depends, for effective classes, only on the divisibility m(β) and the norm
〈β, β〉. We will omit the argument S in the notation.

The genus 0 BPS counts associated to K3 surfaces have the following definition.
Let α ∈ Pic(S) be a nonzero class which is both effective and primitive. The
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NOETHER-LEFSCHETZ THEORY AND THE YAU-ZASLOW CONJECTURE 1015

Gromov-Witten potential Fα(v) for classes proportional to α is

Fα =
∑
m>0

R0,mα vmα.

The BPS counts r0,mα are uniquely defined via the Aspinwall-Morrison formula,

(3) Fα =
∑
m>0

r0,mα

∑
d>0

vdmα

d3
,

for both primitive and divisible classes.
The Yau-Zaslow conjecture [36] predicts the values of the genus 0 BPS counts

for the reduced Gromov-Witten theory of K3 surfaces. We interpret the conjecture
in two parts.

Conjecture 1. The BPS count r0,β depends upon β only through the norm 〈β, β〉.

Conjecture 1 is rather surprising from the point of view of Gromov-Witten theory
since R0,β certainly depends upon the divisibility of β. Let r0,m,h denote the genus
0 BPS count associated to a class β of divisibility m satisfying

〈β, β〉 = 2h− 2.

Assuming Conjecture 1 holds, we define

r0,h = r0,m,h,

independent1 of m.

Conjecture 2. The BPS counts r0,h are uniquely determined by

(4)
∑
h≥0

r0,h qh =

∞∏
n=1

(1− qn)−24.

Conjecture 2 can be written in terms of the Dedekind η function∑
h≥0

r0,h qh−1 = η(τ )−24,

where q = e2πiτ .
The conjectures have been previously proven in very few cases. A proof of the

Yau-Zaslow formula (4) for primitive classes β via Euler characteristics of compact-
ified Jacobians following [36] can be found in [3, 7, 11]. The Yau-Zaslow formula
(4) was proven via Gromov-Witten theory for primitive classes β by Bryan and
Leung [6]. An early calculation by Gathmann [13] for a class β of divisibility 2 was
important for the correct formulation of the conjectures. Conjectures 1 and 2 have
been proven in the divisibility 2 case by Lee and Leung [26] and Wu [35]. The main
result of the paper is a proof of Conjectures 1 and 2 in all cases.

Theorem 1. The Yau-Zaslow conjecture holds for all nonzero effective classes
β ∈ Pic(S) on a K3 surface S.

1Independence of m holds when 2m2 divides 2h − 2. Otherwise, no such class β exists and
r0,m,h is defined to vanish.
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1016 A. KLEMM, D. MAULIK, R. PANDHARIPANDE, AND E. SCHEIDEGGER

0.2. Noether-Lefschetz theory.

0.2.1. Lattice polarization. Let S be a K3 surface. A primitive class L ∈ Pic(S) is
a quasi-polarization if

〈L,L〉 > 0 and 〈L, [C]〉 ≥ 0

for every curve C ⊂ S. A sufficiently high tensor power Ln of a quasi-polarization
is base point free and determines a birational morphism

S → S̃

contracting A-D-E configurations of (−2)-curves on S. Hence, every quasi-polarized
K3 surface is algebraic.

Let Λ be a fixed rank r primitive2 embedding

Λ ⊂ U ⊕ U ⊕ U ⊕ E8(−1)⊕ E8(−1)

with signature (1, r − 1), and let v1, . . . , vr ∈ Λ be an integral basis. The discrimi-
nant is

Δ(Λ) = (−1)r−1 det

⎛⎜⎝〈v1, v1〉 · · · 〈v1, vr〉
...

. . .
...

〈vr, v1〉 · · · 〈vr, vr〉

⎞⎟⎠ .

The sign is chosen so that Δ(Λ) > 0.
A Λ-polarization of a K3 surface S is a primitive embedding

j : Λ → Pic(S)

satisfying two properties:

(i) the lattice pairs Λ ⊂ U3 ⊕ E8(−1)2 and Λ ⊂ H2(S,Z) are isomorphic via
an isometry which restricts to the identity on Λ,

(ii) Im(j) contains a quasi-polarization.

By (ii), every Λ-polarized K3 surface is algebraic.
The period domain M of Hodge structures of type (1, 20, 1) on the lattice U3 ⊕

E8(−1)2 is an analytic open set of the 20-dimensional nonsingular isotropic quadric
Q,

M ⊂ Q ⊂ P
(
(U3 ⊕ E8(−1)2)⊗Z C

)
.

Let MΛ ⊂ M be the locus of vectors orthogonal to the entire sublattice Λ ⊂
U3 ⊕ E8(−1)2.

Let Γ be the isometry group of the lattice U3 ⊕ E8(−1)2, and let

ΓΛ ⊂ Γ

be the subgroup restricting to the identity on Λ. By global Torelli, the moduli
space MΛ of Λ-polarized K3 surfaces is the quotient

MΛ = MΛ/ΓΛ.

We refer the reader to [10] for a detailed discussion.

2An embedding of lattices is primitive if the quotient is torsion free.
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NOETHER-LEFSCHETZ THEORY AND THE YAU-ZASLOW CONJECTURE 1017

0.2.2. Families. Let X be a compact 3-dimensional complex manifold equipped
with holomorphic line bundles

L1, . . . , Lr → X

and a holomorphic map
π : X → C

to a nonsingular complete curve.
The tuple (X,L1, . . . , Lr, π) is a 1-parameter family of nonsingular Λ-polarized

K3 surfaces if

(i) the fibers (Xξ, L1,ξ, . . . , Lr,ξ) are Λ-polarized K3 surfaces via

vi �→ Li,ξ

for every ξ ∈ C,
(ii) there exists a λπ ∈ Λ which is a quasi-polarization of all fibers of π simul-

taneously.

The family π yields a morphism,

ιπ : C → MΛ,

to the moduli space of Λ-polarized K3 surfaces.
Let λπ = λπ

1v1 + · · ·+ λπ
r vr. A vector (d1, . . . , dr) of integers is positive if

r∑
i=1

λπ
i di > 0.

If β ∈ Pic(Xξ) has intersection numbers

di = 〈Li,ξ, β〉,
then β has positive degree with respect to the quasi-polarization if and only if
(d1, . . . , dr) is positive.

0.2.3. Noether-Lefschetz divisors. Noether-Lefschetz numbers are defined in [31] by
the intersection of ιπ(C) with Noether-Lefschetz divisors in MΛ. We briefly review
the definition of the Noether-Lefschetz divisors.

Let (L, ι) be a rank r+1 lattice L with an even symmetric bilinear form 〈, 〉 and
a primitive embedding

ι : Λ → L.

Two data sets (L, ι) and (L′, ι′) are isomorphic if there is an isometry which restricts
to the identity on Λ. The first invariant of the data (L, ι) is the discriminant Δ ∈ Z

of L.
An additional invariant of (L, ι) can be obtained by considering any vector v ∈ L

for which3

(5) L = ι(Λ)⊕ Zv.

The pairing
〈v, ·〉 : Λ → Z

determines an element of δv ∈ Λ∗. Let G = Λ∗/Λ be the quotient defined via the
injection Λ → Λ∗ obtained from the pairing 〈, 〉 on Λ. The group G is abelian of
order equal to the discriminant Δ(Λ). The image

δ ∈ G/±
3Here, ⊕ is used just for the additive structure (not the orthogonal direct sum).
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1018 A. KLEMM, D. MAULIK, R. PANDHARIPANDE, AND E. SCHEIDEGGER

of δv is easily seen to be independent of v satisfying (5). The invariant δ is the
coset of (L, ι).

By elementary arguments, two data sets (L, ι) and (L′, ι′) of rank r + 1 are
isomorphic if and only if the discriminants and cosets are equal.

Let v1, . . . , vr be an integral basis of Λ as before. The pairing of L with respect
to an extended basis v1, . . . , vr, v is encoded in the matrix

Lh,d1,...,dr
=

⎛⎜⎜⎜⎝
〈v1, v1〉 · · · 〈v1, vr〉 d1

...
. . .

...
...

〈vr, v1〉 · · · 〈vr, vr〉 dr
d1 · · · dr 2h− 2

⎞⎟⎟⎟⎠ .

The discriminant is

Δ(h, d1, . . . , dr) = (−1)rdet(Lh,d1,...,dr
).

The coset δ(h, d1, . . . , dr) is represented by the functional

vi �→ di.

The Noether-Lefschetz divisor PΔ,δ ⊂ MΛ is the closure of the locus of Λ-
polarized K3 surfaces S for which (Pic(S), j) has rank r + 1, discriminant Δ, and
coset δ. By the Hodge index theorem, PΔ,δ is empty unless Δ > 0.

Let h, d1, . . . , dr determine a positive discriminant

Δ(h, d1, . . . , dr) > 0.

The Noether-Lefschetz divisor Dh,(d1,...,dr) ⊂ MΛ is defined by the weighted sum

Dh,(d1,...,dr) =
∑
Δ,δ

m(h, d1, . . . , dr|Δ, δ) · [PΔ,δ],

where the multiplicity m(h, d1, . . . , dr|Δ, δ) is the number of elements β of the
lattice (L, ι) of type (Δ, δ) satisfying

(6) 〈β, β〉 = 2h− 2, 〈β, vi〉 = di.

If the multiplicity is nonzero, then Δ|Δ(h, d1, . . . , dr), so only finitely many divisors
appear in the above sum.

If Δ(h, d1, . . . , dr) = 0, the divisor Dh,(d1,...,dr) has an alternate definition. The
tautological line bundle O(−1) is Γ-equivariant on the period domain MΛ and
descends to the Hodge line bundle

K → MΛ.

We define Dh,(d1,...,dr) = K∗. See [31] for an alternate view of degenerate intersec-
tion.

If Δ(h, d1, . . . , dr) < 0, the divisor Dh,(d1,...,dr) on MΛ is defined to vanish by
the Hodge index theorem.

0.2.4. Noether-Lefschetz numbers. Let Λ be a lattice of discriminant l = Δ(Λ),
and let (X,L1, . . . , Lr, π) be a 1-parameter family of Λ-polarized K3 surfaces. The
Noether-Lefschetz number NLπ

h,d1,...,dr
is the classical intersection product

(7) NLπ
h,(d1,...,dr)

=

∫
C

ι∗π[Dh,(d1,...,dr)].
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NOETHER-LEFSCHETZ THEORY AND THE YAU-ZASLOW CONJECTURE 1019

Let Mp2(Z) be the metaplectic double cover of SL2(Z). There is a canonical
representation [4] associated to Λ,

ρ∗Λ : Mp2(Z) → End(C[G]).

The full set of Noether-Lefschetz numbers NLπ
h,d1,...,dr

defines a vector-valued mod-
ular form

Φπ(q) =
∑
γ∈G

Φπ
γ (q)vγ ∈ C[[q

1
2l ]]⊗ C[G],

of weight 22−r
2 and type ρ∗Λ by results4 of Borcherds and Kudla-Millson [4, 25]. The

Noether-Lefschetz numbers are the coefficients5 of the components of Φπ,

NLπ
h,(d1,...,dr)

= Φπ
γ

[
Δ(h, d1, . . . , dr)

2l

]
,

where δ(h, d1, . . . , dr) = ±γ. The modular form results significantly constrain the
Noether-Lefschetz numbers.

0.2.5. Refinements. If d1, . . . , dr do not simultaneously vanish, refined Noether-
Lefschetz divisors are defined. If Δ(h, d1, . . . , dr) > 0,

Dm,h,(d1,...,dr) ⊂ Dh,(d1,...,dr)

is defined by requiring the class β ∈ Pic(S) to satisfy (6) and have divisibility
m > 0. If Δ(h, d1, . . . , dr) = 0, then

Dm,h,(d1,...,dr) = Dh,(d1,...,dr)

if m > 0 is the greatest common divisor of d1, . . . , dr and 0 otherwise.
Refined Noether-Lefschetz numbers are defined by

(8) NLπ
m,h,(d1,...,dr)

=

∫
C

ι∗π[Dm,h,(d1,...,dr)].

In Section 2.5, the full set of Noether-Lefschetz numbers NLπ
h,(d1,...,dr)

is easily

shown to determine the refined numbers NLπ
m,h,(d1,...,dr)

.

0.3. Three theories. The main geometric idea in the proof is the relationship of
three theories associated to a 1-parameter family

π : X → C

of Λ-polarized K3 surfaces:

(i) the Noether-Lefschetz numbers of π,
(ii) the genus 0 Gromov-Witten invariants of X,
(iii) the genus 0 reduced Gromov-Witten invariants of the K3 fibers.

The Noether-Lefschetz numbers (i) are classical intersection products while the
Gromov-Witten invariants (ii)-(iii) are quantum in origin. For (ii), we view the
theory in terms of the Gopakumar-Vafa invariants6 [16, 17].

Let nX
0,(d1,...,dr)

denote the Gopakumar-Vafa invariant of X in genus 0 for π-

vertical curve classes of degrees d1, . . . , dr with respect to the line bundles L1, . . . ,
Lr. Let r0,m,h denote the reducedK3 invariant defined in Section 0.1. The following

4While the results of the papers [4, 25] have considerable overlap, we will follow the point of
view of Borcherds.

5If f is a series in q, f [k] denotes the coefficient of qk.
6A review of the definitions can be found in Section 2.5.
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result is proven7 in [31] by a comparison of the reduced and usual deformation
theories of maps of curves to the K3 fibers of π.

Theorem 2. For degrees (d1, . . . , dr) positive with respect to the quasi-polarization
λπ,

nX
0,(d1,...,dr)

=
∞∑
h=0

∞∑
m=1

r0,m,h ·NLπ
m,h,(d1,...,dr)

.

0.4. Proof of Theorem 1. The STU model described in Section 1 is a special
family of rank 2 lattice polarized K3 surfaces

πSTU : XSTU → P1.

The fibered K3 surfaces of the STU model are themselves elliptically fibered. The
proof of Theorem 1 proceeds in four basic steps:

(i) The modular form [4, 25] determining the intersections of the base P1 with
the Noether-Lefschetz divisors is calculated. For the STU model, the mod-
ular form has vector dimension 1 and is proportional to the product E4E6

of Eisenstein series.
(ii) Theorem 2 is used to show the 3-fold BPS counts nXSTU

0,(d1,d2)
, then determine

all the reduced K3 invariants r0,m,h. Strong use is made of the rank 2
lattice of the STU model.

(iii) The BPS counts nXSTU

0,(d1,d2)
are calculated via mirror symmetry. Since the

STU model is realized as a Calabi-Yau complete intersection in a nonsingu-
lar toric variety, the genus 0 Gromov-Witten invariants are obtained after
proven mirror transformations from hypergeometric series. The Klemm-

Lerche-Mayr identity, proven in Section 3, shows that the invariants nXSTU

0,(d1,d2)

are themselves related to modular forms.
(iv) Theorem 1 then follows from the Harvey-Moore identity which simultane-

ously relates the modular structures of

nXSTU

0,(d1,d2)
, r0,m,h, and NLπSTU

m,h,(d1,d2)

in the form specified by Theorem 2. D. Zagier’s proof of the Harvey-Moore
identity is presented in Section 4.

The strategy of proof is special to genus 0. Much less is known in higher genus.
The Katz-Klemm-Vafa conjecture [21, 31] for the integral8∫

[Mg(S,β)]red
(−1)gλg

is a particular generalization of the Yau-Zaslow formula to higher genera. The
KKV formula does not yet appear easily approachable in Gromov-Witten theory.9

However, a proof of the KKV formula for primitive K3 classes in the conjecturally
equivalent theory of stable pairs in the derived category is given in [22, 34].

7The result of [31] is stated in the rank r=1 case, but the argument is identical for arbitrary
r.

8The integrand λg is the top Chern class of the Hodge bundle on Mg(X,β).
9For g = 1, the KKV formula follows for all classes on K3 surfaces from the Yau-Zaslow

formula via the boundary relation for λ1.
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1. The STU model

1.1. Overview. The STU model10 is a particular nonsingular projective Calabi-
Yau 3-fold X equipped with a fibration

(9) π : X → P1.

Except for 528 points ξ ∈ P1, the fibers

Xξ = π−1(ξ)

are nonsingular elliptically fibered K3 surfaces. The 528 singular fibers Xξ have
exactly 1 ordinary double point singularity each.

The 3-fold X is constructed as an anticanonical section of a nonsingular projec-
tive toric 4-fold Y . The Picard rank of Y is 6. The fibration (9) is obtained from
a nonsingular toric fibration

πY : Y → P1.

The image of

Pic(Y ) → Pic(Xξ)

determines a rank 2 sublattice of each fiber Pic(Xξ) with intersection form(
0 1
1 0

)
.

The toric data describing the construction of X ⊂ Y and the fibration structure
are explained here.

1.2. Toric varieties. Let N be a lattice of rank d,

N
∼
= Zd.

A fan Σ in N is a collection of strongly convex rational polyhedral cones containing
all faces and intersections. A toric variety VΣ is canonically associated to Σ. The
variety VΣ is complete of dimension d if the support of Σ covers N ⊗Z R. If all
cones are simplicial and if all maximal cones are generated by a lattice basis, then
VΣ is nonsingular. See [8, 12, 32] for the basic properties of toric varieties.

Let Σ be a fan corresponding to a nonsingular complete toric variety. A 1-
dimensional cone of Σ is a ray with a unique primitive vector. Let Σ(1) denote the
set of 1-dimensional cones of Σ indexed by their primitive vectors

(10) {ρ1, . . . , ρn}.
Let r1, . . . , r	 be a basis over the integers of the module of relations among the
vectors (10). We write the jth relation as

rj1ρ1 + . . .+ rjnρn = 0.

Define a torus

(C∗)	
∼
=

	∏
j=1

C∗
j

with factors indexed by the relations.

10The model has been studied in physics since the 1980s. The letter S stands for the dilaton
and T and U label the torus moduli in the heterotic string. The STU model was an important
example for the duality between type IIA and heterotic strings formulated in [20]. The ideas
developed in [18, 19, 23, 24, 30] about the STU model play an important role in our paper.
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1022 A. KLEMM, D. MAULIK, R. PANDHARIPANDE, AND E. SCHEIDEGGER

A simple description of VΣ is obtained via a quotient construction. Let {zi}1≤i≤n

be coordinates on Cn corresponding to the primitives ρi of the rays in Σ(1). An
action of C∗

j on Cn is defined by

(11) λj ·
(
z1, . . . , zn

)
=

(
λ
rj1
j z1, . . . , λ

rjn
j zn

)
, λj ∈ C∗

j .

In order to obtain a well-behaved quotient for the induced (C∗)	-action on Cn,
an exceptional set Z(Σ) ⊂ Cn consisting of a finite union of linear subspaces is
excluded. The linear space defined by {zi = 0 |i ∈ I} is contained in Z(Σ) if there
is no single cone in Σ containing all of the primitives {ρi}i∈I . After removing Z(Σ),
the quotient

(12) VΣ =
(
Cn \ Z(Σ)

)/(
C∗)	

yields the toric variety associated to Σ.
Since 
 = n− d, the complex dimension of the quotient VΣ equals the rank d of

the lattice N . The variety VΣ is equipped with the action of the quotient torus

T = (C∗)n/(C∗)	.

The rank of Pic(VΣ) is 
. The primitives ρi are in 1–to–1 correspondence with the
T -invariant divisors Di on VΣ defined by

(13) Di =
{
zi = 0

}
⊂ VΣ.

Conversely, the homogeneous coordinate zi is a section of the line bundle O(Di).
The anticanonical divisor class of VΣ is determined by

(14) −KVΣ
=

n∑
i=1

Di.

1.3. The toric 4-fold Y . The fan Σ in Z4 defining the toric 4-fold Y has 10 rays
with primitive elements:

ρ1 = (1, 0, 2, 3), ρ2 = (−1, 0, 2, 3),
ρ3 = (0, 1, 2, 3), ρ4 = (0,−1, 2, 3),
ρ5 = (0, 0, 2, 3), ρ6 = (0, 0,−1, 0), ρ7 = (0, 0, 0,−1),
ρ8 = (0, 0, 1, 2), ρ9 = (0, 0, 0, 1), ρ10 = (0, 0, 1, 1).

The full fan Σ is obtained from the convex hull of the 10 primitives. By explicitly
checking each of the 24 dimension-4 cones, Y is seen to be a complete nonsingular
toric 4-fold.

Generators r1, . . . , r6 of the rank 6 module of relations among the primitives can
be taken to be

ρ1 +ρ2 +4ρ6 +6ρ7 = 0,
ρ3 +ρ4 +4ρ6 +6ρ7 = 0,

ρ5 +2ρ6 +3ρ7 = 0,
ρ6 +2ρ7 +ρ8 = 0,

+ ρ7 +ρ9 = 0,
ρ6 + ρ7 +ρ10 = 0.
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NOETHER-LEFSCHETZ THEORY AND THE YAU-ZASLOW CONJECTURE 1023

By the identification (14) of −KY , the product
∏10

i=1 zi defines an anticanonical
section. Hence, every product

10∏
i=1

zmi
i , mi ≥ 0,

which is homogeneous of degree
∑10

i=1 r
j
i with respect to the action (11) of C∗

j also
defines an anticanonical section. Hence,

z1
12z4

12z5
6z8

4z9
2z10

3, z1
12z3

12z5
6z8

4z9
2z10

3,(15)

z2
12z4

12z5
6z8

4z9
2z10

3, z2
12z3

12z5
6z8

4z9
2z10

3,

z6
3z8z9

2, z7
2z10

are all sections of −KY .
From the definitions, we find that Z(Σ) consists of the union of the following 11

linear spaces of dimension 2 in C4:

(16)

I1 = {1, 2}, I2 = {3, 4}, I3 = {5, 6}, I4 = {5, 7},
I5 = {5, 9}, I6 = {6, 8}, I7 = {6, 10}, I8 = {7, 8},
I9 = {7, 9}, I10 = {8, 10}, I11 = {9, 10} .

Recall, Ik indexes the coordinates which vanish.
A simple verification shows that the 6 sections (15) of −KY do not have a

common zero on the prequotient Cn \ Z(Σ). Hence, −KY is generated by global
sections on Y . A hypersurface

X ⊂ Y

defined by a generic section of −KY is nonsingular by Bertini’s Theorem. By
adjunction, X is Calabi-Yau.

1.4. Fibrations. The toric variety Y admits two obvious fibrations

πY : Y → P1, μY :→ P1

given in homogeneous coordinates by

πY (z1, . . . , z10) = [z1, z2], μY (z1, . . . , z10) = [z3, z4].

Since Z(Σ) contains the linear spaces

I1 = {1, 2}, I2 = {3, 4},
both πY and μY are well-defined.

Consider first πY . The fibers of πY are nonsingular complete toric 3-folds defined
by the fan in

Z3 ⊂ Z4, (c1, c2, c3) �→ (0, c1, c2, c3)

determined by the primitives ρ3, . . . , ρ10.
Let X be obtained from a generic section of −KY . Let

π : X → P1

be the restriction πY |X .

Proposition 1. Except for 528 points ξ ∈ P1, the fibers

Xξ = π−1(ξ)

are nonsingular elliptically fibered K3 surfaces. The 528 singular fibers Xξ each
have exactly 1 ordinary double point singularity.
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Proof. Let Pk,k(z1, z2|z3, z4) denote a bihomogeneous polynomial of degree k in
(z1, z2) and degree k in (z3, z4). Let

F = P12,12(z1, z2|z3, z4), G = P8,8(z1, z2|z3, z4), H = P4,4(z1, z2|z3, z4)
be bihomogeneous polynomials. Then

(17) Fz65z
4
8z

2
9z

3
10, Gz45z6z

3
8z

2
9z

2
10, Hz25z

2
6z

2
8z

2
9z10, z36z8z

2
9 , z27z10

all determine sections of −KY .
Let X be defined by a generic linear combination of the sections (17). Since

the base point free system (15) is contained in (17), X is nonsingular. We will
prove that all the fibers Xξ are nonsingular, except for finitely many with exactly
1 ordinary double point each, by an explicit study of the equations.

Since I7 = {6, 10}, I10 = {8, 10}, and I11 = {9, 10} are in Z(Σ), we easily see
that X ∩D10 = ∅ if the coefficient of z36z8z

2
9 is nonzero. Similarly,

X ∩D8 = ∅, X ∩D9 = ∅.
Hence, using the last 3 factors of the torus (C∗)	, the coordinates z8, z9, and z10
can all be set to 1. The equation for X simplifies to

Fz65 +Gz45z6 +Hz25z
2
6 + αz36 + βz27 .

The coordinates z1 and z2 do not simultaneously vanish on Y . There are two
charts to consider. By symmetry, the analysis on each is identical, so we assume
z1 
= 0. Using the first factor of (C∗)	, we set z1 = 1. By the same reasoning, we
set z3 = 1 using the second factor of (C∗)	. Since I3 = {5, 6} and I4 = {5, 7} are in
Z(Σ), either z5 
= 0 or both z6 and z7 do not vanish.

Case z5 
= 0. Using the third factor of (C∗)	 to set z5 = 1, we obtain the equation

(18) F (1, z2|1, z4) +H(1, z2|1, z4)z6 +G(1, z2|1, z4)z26 + αz36 + βz27

in C4 with coordinates z2, z4, z6, z7. The map π is given by the z2 coordinate. The
partial derivative of (18) with respect to z7 is 2βz7. Hence, if β 
= 0, all singularities
of π occur when z7 = 0.

We need only analyze the reduced dimension case

(19) F (1, z2|1, z4) +H(1, z2|1, z4)z6 +G(1, z2|1, z4)z26 + z36

with coordinates z2, z4, z6. Here, α has been set to 1 by scaling the equation. We
must show that all the fibers of π are nonsingular curves except for finitely many
with simple nodes. We view equation (19) as defining a 1-parameter family of paths
γz2(z4) in the space

C = {γ0 + γ1z6 + γ2z
2
6 + z36 | γ0, γ1, γ2 ∈ C}

of cubic polynomials in the variable z6. The coordinate of the path is z4. The
variable z2 indexes the family of paths.

Let Δ ⊂ C be the codimension 1 discriminant locus of cubics with double roots.
The discriminant is irreducible with cuspidal singularities in codimension 2 in C.
The possible singularities of the fiber π−1(λ) occur only when the path γλ(z4)
intersects Δ. The fiber π−1(λ) is nonsingular over such an intersection point if
either

(i) γλ is transverse to Δ at a nonsingular point of Δ,
(ii) γλ is transverse to the codimension 1 tangent cone of a singular point of Δ.
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The fiber π−1(λ) has a simple node over an intersection point of the path γλ(z4)
with Δ if

(iii) γλ is tangent to Δ at a nonsingular point of Δ.

The above are all the possibilities which can occur in a generic 1-parameter family
of paths in the space of cubic equations.11 Possibility (iii) can happen only for
finitely many λ and just once for each such λ.

Case z6 
= 0 and z7 
= 0. Using the third factor of (C∗)	 to set z6 = 1, we obtain
the equation

(20) F (1, z2|1, z4) +H(1, z2|1, z4) +G(1, z2|1, z4) + α+ βz27

in C4 with coordinates z2, z4, z5, z7. The partial derivative of (20) with respect to
z7 is not 0 for z7 
= 0. Hence, there are no singular fibers of π on the chart.

We have proven that all the fibers Xξ of π are nonsingular except for finitely
many with exactly 1 ordinary double point each. Let Xξ be a nonsingular fiber.
Let

μ : X → P1

be the restriction μY |X . The fibers of the product

(π, μ) : X → P1 × P1

are easily seen to be anticanonical sections of the nonsingular toric surface12 W with
fan in Z2 determined by the primitives ρ5, . . . , ρ10. These anticanonical sections are
elliptic curves. Since Xξ has trivial canonical bundle by adjunction and the map

μ : Xξ → P1

is dominant with elliptic fibers, we conclude that Xξ is an elliptically fibered K3
surface.

The Euler characteristic of X can be calculated by toric intersection in Y ,

χtop(X) = −480.

The Euler characteristic of a nonsingular K3 fibration over P1 is 48. Since each fiber
singularity reduces the Euler characteristic by 1, we conclude that π has exactly
528 singular fibers. �

For emphasis, we will sometimes denote the STU model by

πSTU : XSTU → P1.

1.5. Divisor restrictions. The divisors D1, D2, D8, D9, and D10 have already
been shown to restrict to the trivial class in Pic(Xξ). The divisors D3 and D4

restrict to the fiber class F ∈ Pic(Xξ) of the elliptic fibration

(21) μ : Xξ → P1.

Certainly F 2 = 0. Let S ∈ Pic(Xξ) denote the restriction of D5. Toric calculations
yield the products

F · S = 1, S · S = −2.

11A cusp of π−1(λ) occurs, for example, when the path has contact order 3 at a nonsingular
point of the discriminant.

12Since the product (πY , μY ) : Y → P1×P1 has fibers isomorphic to the nonsingular complete
(hence projective) toric surface W , the 4-fold Y is projective.
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Hence, S may be viewed as the section class of the elliptic fibration (21). The
divisors D6 and D7 restrict to classes in the rank 2 lattice generated by F and S.

The restriction of Pic(Y ) to each fiber Xξ is a rank 2 lattice generated by F and
S with intersection form (

0 1
1 −2

)
.

We may also choose generators L1 = F and L2 = F + S with intersection form

Λ =

(
0 1
1 0

)
.

1.6. 1-parameter families. Let X be a compact 3-dimensional complex manifold
equipped with two holomorphic line bundles

L1, L2 → X

and a holomorphic map

π : X → C

to a nonsingular complete curve.
The data (X,L1, L2, π) determine a family of Λ-polarized K3 surfaces if the

fibers (Xξ, L1,ξ, L2,ξ) are K3 surfaces with intersection form(
L1,ξ · L1,ξ L2,ξ · L1,ξ

L1,ξ · L2,ξ L2,ξ · L2,ξ

)
=

(
0 1
1 0

)
and there exists a simultaneous quasi-polarization. The 1-parameter family (X,L1,
L2, π) yields a morphism,

ιπ : C → MΛ,

to the moduli space of Λ-polarized K3 surfaces.
The construction (XSTU , L1, L2, π

STU ) of the STU model in Sections 1.3-1.5 is
almost a 1-parameter family of Λ-polarized K3 surfaces. The only failing is the 528
singular fibers of πSTU . Let

ε : C
2−1−→ P1

be a hyperelliptic curve branched over the 528 points of P1 corresponding to the
singular fibers of π. The family

ε∗(XSTU ) → C

has 3-fold double point singularities over the 528 nodes of the fibers of the original
family. Let

π̃STU : X̃STU → C

be obtained from a small resolution

X̃STU → ε∗(XSTU ).

Let L̃i → X̃STU be the pull-back of Li by ε. The data

(X̃STU , L̃1, L̃2, π̃
STU )

determine a 1-parameter family of Λ-polarized K3 surfaces; see Section 5.3 of [31].
The simultaneous quasi-polarization is obtained from the projectivity of XSTU .
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1.7. Gromov-Witten invariants. Since XSTU is defined by an anticanonical sec-
tion in a semi-positive nonsingular toric variety Y , the genus 0 Gromov-Witten
invariants have been proven by Givental [14, 15, 29, 33] to be related by mirror
transformation to hypergeometric solutions of the Picard-Fuchs equations of the
Batyrev-Borisov mirror. By Section 5.3 of [31], the Gromov-Witten invariants of

X̃STU are exactly twice the Gromov-Witten invariants of XSTU for curve classes
in the fibers.

2. Noether-Lefschetz numbers and reduced K3 invariants

2.1. Refined Noether-Lefschetz numbers. Following the notation of Section
0.2, let

Λ ⊂ U ⊕ U ⊕ U ⊕ E8(−1)⊕ E8(−1)

be primitively embedded with signature (1, r − 1) and integral basis v1, . . . , vr.
Let (X,L1, . . . , Lr, π) be a 1-parameter family of Λ-polarized K3 surfaces. Let
d1, . . . , dr be integers which do not all vanish.

Lemma 1. The Noether-Lefschetz numbers NLπ
h,(d1,...,dr)

completely determine the

refinements NLπ
m,h,(d1,...,dr)

.

Proof. By definition, the refined Noether-Lefschetz numbers satisfy two elementary
identities. The first is

NLπ
h,(d1,...,dr)

=

∞∑
m=1

NLπ
m,h,(d1,...,dr)

.

If m does not divide all di, then NLπ
m,h,(d1,...,dr)

vanishes. If m divides all di, then

a second identity holds:

NLπ
m,h,(d1,...,dr)

= NLπ
1,h′,(d1/m,...,dr/m),

where 2h− 2 = m2(2h′ − 2).
If Δ(h, d1, . . . , dr) = 0, the refined number NLπ

m,h,(d1,...,dr)
vanishes by definition

unless m is the GCD of (d1, . . . , dr). In the latter case,

NLπ
h,(d1,...,dr)

= NLπ
m,h,(d1,...,dr)

.

Hence the lemma is trivial in the Δ(h, d1, . . . , dr) = 0 case.
If Δ(h, d1, . . . , dr) > 0, we prove the lemma by induction on Δ. The second

identity reduces us to the case where m = 1. The first identity determines the
m = 1 case in terms of the Noether-Lefschetz number NLh,(d1,...,dr) and refined
numbers with

Δ(h′, d′1, . . . , d
′
r) < Δ(h, d1, . . . , dr).

�

2.2. STU model. The resolved version of the STU model

π̃STU : X̃STU → C

is lattice polarized with respect to

Λ =

(
0 1
1 0

)
.

The application of the results of [4, 25] to the STU model is extremely simple. Since
the lattice Λ is unimodular, the corresponding representation ρ∗Λ is 1-dimensional
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and, in fact, is the trivial representation of Mp2(Z). The Noether-Lefschetz degrees
are thus encoded by a scalar modular form of weight 22−r

2 = 10. The space of
such forms is well known to be of dimension 1 and spanned by the product of the
Eisenstein series13

E10(q) = E4(q)E6(q) = 1− 264
∑
n≥1

σ9(n)q
n.

Hence, a single Noether-Lefschetz calculation determines the full series.

Lemma 2. NLπ̃
0,(0,0) = 1056.

Proof. By Proposition 1, the STU model

πSTU : XSTU → P1

has 528 nodal fibers. Let S be a fiber of the resolved family π̃STU lying over a
singular fiber of π. The Picard lattice of S certainly contains

(22)

⎛⎝ 0 1 0
1 0 0
0 0 −2

⎞⎠
spanned by L1, L2, and the (−2)-curve E of the small resolution. Let

ι̃ : C → MΛ

be the map to moduli. Since a class β satisfying

〈β, β〉 = −2

on a K3 surface is either effective or anti-effective, the set-theoretic intersections
of ι̃ with D0,(0,0) correspond to fibers of π̃, where L1 and L2 do not generate an
ample class, precisely, the 528 fibers of π̃ lying over the singular fibers of π.

The divisor D0,(0,0) has multiplicity exactly 2 at the 528 intersections with ι̃ since
E and −E are the only −2 classes orthogonal to L1 and L2. Finally, since E has

normal bundle (−1,−1) in X̃STU , the curve ι̃ is transverse to the reduced divisor
1
2D0,(0,0) at the 528 intersections. We conclude that NLπ̃

0,(0,0) = 528 ·2 = 1056. �

Proposition 2. The Noether-Lefschetz degrees of the resolved STU model are given
by the equation

NLπ̃
h,(d1,d2)

= −4E4(q)E6(q)

[
Δ(h, d1, d2)

2

]
.

13 The Eisenstein series E2k is the modular form defined by the equation

−B2k

4k
E2k(q) = −B2k

4k
+

∑
n≥1

σ2k−1(n)q
n,

where B2n is the 2nth Bernoulli number and σn(k) is the sum of the kth powers of the divisors
of n,

σk(n) =
∑
i|n

ik.
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2.3. BPS states. Let (X̃STU , L̃1, L̃2, π̃
STU ) be the Λ-polarized STU model. The

vertical classes are the kernel of the push-forward map by π̃,

0 → H2(X̃,Z)π̃ → H2(X̃,Z) → H2(C,Z) → 0.

While X̃ need not be a projective variety, X̃ carries a (1, 1)-form ωK which is
Kähler on the K3 fibers of π̃. The existence of a fiberwise Kähler form is sufficient
to define the Gromov-Witten theory for vertical classes,

0 
= γ ∈ H2(X̃,Z)π̃.

The fiberwise Kähler form ωK is obtained by a small perturbation of the quasi-
Kähler form obtained from the quasi-polarization. The associated Gromov-Witten
theory is independent of the perturbation used.

Let M0(X̃, γ) be the moduli space of stable maps from connected genus 0 curves

to X̃. Gromov-Witten theory is defined by integration against the virtual class,

(23) N X̃
0,γ =

∫
[M0(X̃,γ)]vir

1.

The expected dimension of the moduli space is 0.

The genus 0 Gromov-Witten potential F X̃(v) for nonzero vertical classes is the
series

F X̃ =
∑

0	=γ∈H2(X̃,Z)π̃

N X̃
0,γ vγ ,

where v is the curve class variable. The BPS counts nX̃
0,γ of Gopakumar and Vafa

are uniquely defined by the following equation:

F X̃ =
∑

0	=γ∈H2(X̃,Z)π̃

nX̃
0,γ

∑
d>0

vdγ

d3
.

Conjecturally, the invariants nX̃
0,γ are integral and obtained from the cohomology

of an as yet unspecified moduli space of sheaves on X̃. We do not assume that the
conjectural properties hold.

Using the Λ-polarization, we define the BPS counts

(24) nX̃
0,(d1,d2)

=
∑

γ∈H2(X̃,Z)π̃ ,
∫
γ
L̃i=di

nX̃
0,γ

when d1 and d2 are not both 0.
The original STU model,

πSTU : XSTU → P1,

with 528 singular fibers is a nonsingular, projective, Calabi-Yau 3-fold. Hence
the Gromov-Witten invariants are well-defined. Let nX

0,(d1,d2)
denote the fiberwise

Gopakumar-Vafa invariant with degrees di measured by Li. By the argument of
Section 1.7,

nX̃
0,(d1,d2)

= 2nX
0,(d1,d2)

when d1 and d2 are not both 0.
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2.4. Invertibility of constraints. Let P ⊂ Z2 be the set of pairs

P = { (d1, d2) 
= (0, 0) | d1 ≥ 0, d1 ≥ −d2 } .

Pairs (d2, d2) ∈ P are certainly positive with respect to any quasi-polarization for
π̃STU since such (d1, d2) can be realized by linear combinations of the effective
classes F and S.

Theorem 2 applied to the resolved STU model yields the equation

(25) nX̃
0,(d1,d2)

=

∞∑
h=0

∞∑
m=1

r0,m,h ·NLπ̃
m,h,(d1,d2)

for (d1, d2) ∈ P. The BPS states on the left side will be computed by mirror
symmetry in Section 3. The refined Noether-Lefschetz degrees are determined by
Lemma 1 and Proposition 2. Consequently, equation (25) provides constraints on
the reduced K3 invariants r0,m,h.

The integrals r0,m,h are very simple in case h ≤ 0. By Lemma 2 of [31], r0,m,h = 0
for h < 0,

r0,1,0 = 1,

and r0,m,0 = 0 otherwise.

Proposition 3. The set of integrals {r0,m,h}m≥1,h>0 is uniquely determined by the
set of constraints (25) for (d1 ≥ 0, d2 > 0) and the integrals r0,m,h≤0.

Proof. A certain subset of the linear equations with d2 > 0 will be shown to be
upper triangular in the variables r0,m,h. Picard rank 2 is crucial for the argument.

Let us fix in advance the values of m ≥ 1 and h > 0. We proceed by induction
on m assuming the reduced invariants r0,m′,h have already been determined for all
m′ < m. The assumption is vacuous when m = 1. We can also assume that r0,m,h′

has been determined inductively for h′ < h. If 2h− 2 is not divisible by 2m2, then
we have r0,m,h = 0, so we can further assume that

2h− 2 = m2(2s− 2)

for an integer s > 0.
Consider equation (25) for (d1, d2) = (m(s− 1),m). Certainly

NLπ̃
m′,h′,(m(s−1),m) = 0

unless m′ divides m. By the Hodge index theorem, we must have

(26) Δ(h′,m(s− 1),m) = 2− 2h′ +m2(2s− 2) ≥ 0

if NLπ̃
m,h′,(m(s−1),m) 
= 0. Inequality (26) implies that h′ ≤ h.

Therefore, the constraint (25) takes the form

nX̃
0,(m(s−1),m) = r0,m,hNLπ̃

m,h,(m(s−1),m) + . . . ,

where the dots represent terms involving r0,m′,h′ with either

m′ < m or m′ = m, h′ < h.

The leading coefficient is given by

NLπ̃
m,h,(m(s−1),m) = NLπ̃

h,(m(s−1),m) = −4.

As the system is upper-triangular, we can invert to solve for r0,m,h. �
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2.5. Proof of the Yau-Zaslow conjecture. By Proposition 3, we need only
show that the answer for r0,m,h predicted by the Yau-Zaslow conjecture satisfies
the constraints (25) for all pairs (d1 ≥ 0, d2 > 0).

Let XSTU be the original Calabi-Yau 3-fold of the STU model. Let

(27) D3
2F

X =
∑

(d1,d2)∈P
d32 NX

0,(d1,d2)
qd1
1 qd2

2

be the third derivative14 of the genus 0 Gromov-Witten series for π-vertical classes
in P.

We can calculate D3
2F

X by the constraint (25) assuming the validity of the Yau-
Zaslow conjecture,

(28) D3
2F

X =
∑

(d1,d2)∈P
d32 c(d1, d2)

qd1
1 qd2

2

1− qd1
1 qd2

2

,

where c(k, l) is the coefficient of qkl in

−2
E4(q)E6(q)

η24(q)
.

Proposition 4. The Yau-Zaslow conjecture is implied by the identity∑
(d1,d2)∈P

d32N
X
0,(d1,d2)

qd1
1 qd2

2 =
∑

(d1,d2)∈P
d32 c(d1, d2)

qd1
1 qd2

2

1− qd1
1 qd2

2

.

Proof. The qd1
1 qd2

2 coefficient of the above identity is simply d32 times the constraint
(25). Since we only require the constraints in case

(d1 ≥ 0, d2 > 0) ∈ P,

the identity implies all the constraints we need. �

The remainder of the paper is devoted to the proof of Proposition 4. The genus 0
Gromov-Witten invariants ofX are related, after a mirror transformation, to hyper-
geometric solutions of the associated Picard-Fuchs system of differential equations.
Hence, Proposition 4 amounts to a subtle identity among special functions.

3. Mirror transform

3.1. Picard-Fuchs. Let π : X → P1 be the STU model. Let

δ0 ∈ H∗(X,C)

denote the identity class. A basis of H2(X,C) is obtained from the restriction of
the toric divisors of Y discussed in Section 1.5,

δ1 = 2D1 + 2D3 +D5, δ2 = D3, δ3 = D1.

Recall, δ3 vanishes on the fibers of π. Let {δj} be a full basis of H∗(X,C) extending
the above selections.

Let u1, u2, u3 be the canonical coordinates for the mirror family with respect to
the divisor basis δ1, δ2, δ3. Let

θi = ui
∂

∂ui
.

14D2 = q2
d

dq2
.
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The Picard-Fuchs system associated to the mirror of XSTU is:

(29)

L1 = θ1 (θ1 − 2 θ2 − 2 θ3)− 12 (6 θ1 − 5) (6 θ1 − 1)u1,

L2 = θ2
2 − (2 θ2 + 2 θ3 − θ1 − 2) (2 θ2 + 2 θ3 − θ1 − 1) u2,

L3 = θ3
2 − (2 θ2 + 2 θ3 − θ1 − 2) (2 θ2 + 2 θ3 − θ1 − 1) u3 .

The system is obtained canonically from the Batyrev-Borisov construction; see [9]
for the formalism.

3.2. Solutions. A fundamental solution to the Picard-Fuchs system can be written
in terms of GKZ hypergeometric series,

(30) � ∈ H∗(X,C)⊗C C[log(u1), log(u2), log(u3)][[u1, u2, u3]].

Let �(u, δj) be the corresponding coefficient of (30). Then

Li �(u, δj) = 0.

The standard normalization of � satisfies two important properties:

(i) The δ0 coefficient is the unique solution

�(u, δ0) = 1 +O(u)

holomorphic at u = 0.
(ii) For 1 ≤ i ≤ 3,

�(u, δi) =
�(u, δ0)

2πi
log(ui) +O(u)

are the logarithmic solutions.

Let T1, T2, T3 be coordinates on H2(X,C) with respect to the basis δ. The mirror
transformation is defined by

Ti =
�(u, δi)

�(u, δ0)
=

1

2πi
log(ui) +O(u)

for 1 ≤ i ≤ 3.
The mirror transformation relates the genus 0 Gromov-Witten theory of X to

the Picard-Fuchs system for the mirror family. For anticanonical hypersurfaces in
toric varieties, a proof is given in [15].

3.3. Mirror transform for q3 = 0. We introduce two modular parameters

(31) τ1 = T1, τ2 = T1 + T2 .

For i = 1 and 2, let
q̂i = exp(2πiτi),

and let q3 = exp(2πiT3).
Our first step is to find a modular expression for the mirror map and the period

�(u, δ0) to leading order in q3. We prove two formulas discovered by Klemm,
Lerche, and Mayr in [24].

Lemma 3. We have

u1 =
2(j(q̂1) + j(q̂2)− μ)

j(q̂1)j(q̂2) +
√
j(q̂1)(j(q̂1)− μ)

√
j(q̂2)(j(q̂2)− μ)

+O(q3),

u2 =
(j(q̂1)j(q̂2) +

√
j(q̂1)(j(q̂2)− μ)

√
j(q̂2)(j(q̂2)− μ))2

4j(q̂1)j(q̂2)(j(q̂1) + j(q̂2)− μ)2
+ O(q3),
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where μ = 1728 and

(32) j(q) =
E3

4

η24
=

1

q
+ 744 + 196884q +O(q2)

is the normalized j function.

Lemma 4. Limq3→0 �(u, δ0) = E4(q̂1)
1
4E4(q̂2)

1
4 .

Proof. We prove Lemmas 3 and 4 together. The first step is to perform the following
change of variables:

u1 = z1, u2 =
z2
2

(
1 +

√
1− 4z3

)
, u3 =

z2
2

(
1−

√
1− 4z3

)
,

with the inverse change

z1 = u1, z2 = u2 + u3, z3 =
u2u3

(u2 + u3)2
.

In the new variables, the limit u3 → 0 becomes the limit z3 → 0.
The statement of Lemma 3 in the variables zi remains unchanged to first order

in q3. We will prove

z1 =
2 (j(q̂1) + j(q̂2)− μ)

j(q̂1)j(q̂2) +
√
j(q̂1)(j(q̂1)− μ)

√
j(q̂2)(j(q̂2)− μ)

+O(q3),

z2 =
(j(q̂1)j(q̂2) +

√
j(q̂1)(j(q̂2)− μ)

√
j(q̂2)(j(q̂2)− μ))2

4j(q̂1)j(q̂2)(j(q̂1) + j(q̂2)− μ)2
+O(q3) .

The Picard-Fuchs differential operators (29) can be rewritten as

L′
1(z) = L1(u),

z2
√
1− 4z3 L′

2(z) = L2(u)− L3(u),

z2
√
1− 4z3 L′

3(z) = u3L2(u)− u2L3(u),

with

L′
1 = θ1 (θ1 − 2 θ2)− 12 (6 θ1 − 5) (6 θ1 − 1) z1,

L′
2 = θ2 (θ2 − 2 θ3)− (2 θ2 − θ1 − 2) (2 θ2 − θ1 − 1) z2,

L′
3 = θ3

2 − (2 θ3 − θ2 − 2) (2 θ3 − θ2 − 1) z3,

where now θi = zi
d
dzi

. Since L′
3(z) → 0 in the limit z3 → 0, we need only focus on

L′
1(z) and L′

2(z).
Next, we transform L′

1(z) and L′
2(z) to new variables y1, y2, y3 via the change

z1 =
2 (y1 + y2 − μ)

y1y2 +
√
y1(y1 − μ)

√
y2(y2 − μ)

,

z2 =
(y1y2 +

√
y1(y1 − μ)

√
y2(y2 − μ))2

4y1y2(y1 + y2 − μ)2
,

z3 = y3.
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We obtain

L′′
1 = y21y2(y1 − μ)∂2

y1
+ y1y2(y1 −

μ

2
)∂y1

− y1y
2
2(y2 − μ)∂2

y2

− y1y2(y2 −
μ

2
)∂y2

+ 60(y1 − y2),

L′′
2 = −y21(y1 − μ) ∂2

y1
+ y1(

μ

2
− y1)∂y1

+ y22(y2 − μ) ∂2
y2

+ y2(y2 −
μ

2
)∂y2

− 2y1y3(y1 − μ)∂y1
∂y3

+ 2y2y3(y2 − μ)∂y2
∂y3

.

In the limit y3 → 0, the second line on the right for L′′
2 vanishes. We can combine

L′′
1 and L′′

2 to obtain the following simple forms:

L′′
1 + y1 lim

y3→0
L′′
2 = (y1 − y2)

(
60−

(
y1 −

μ

2

)
y1 ∂y1

− (y1 − μ) y21 ∂
2
y1

)
,

L′′
1 + y2 lim

y3→0
L′′
2 = (y1 − y2)

(
60−

(
y2 −

μ

2

)
y2 ∂y2

− (y2 − μ) y22 ∂
2
y2

)
.

The solution �(y, δ0)y3=0 therefore satisfies the differential equation

(33) L = (y − μ) y2∂2
y +

(
y − μ

2

)
y ∂y − 60

in both y1 and y2.
Changing (33) to the variable t = 1728

y yields

L = t(1− t)∂2
t + (1− 3

2 t)∂t −
5

144 ,

which by comparing with the general hypergeometric differential operator

L = t(1− t)∂2
t + (c− (1 + a+ b)t)∂t − ab

is identified with the system

2F1(a, b; c; t) = 2F1(
1

12
,
5

12
; 1; t(τ )).

According to the results of Klein and Fricke as reviewed in [37], we have a unique
(up to scaling) solution g0 to (33) locally analytic at y = ∞. The solution can be
written as

g0(j(τ )) = (E4)
1
4 (τ ), y(τ ) = j(τ ) .

Moreover, the inverse is

τ (y) =
g1(y)

2πig0(y)
,

where g1 is a logarithmic solution at y = ∞ of L, unique up to normalization and
addition of g0.

Transformation of the solution �(u, δ0) is seen to be analytic in a neighborhood
of t1 = t2 = 0. We conclude that

�(u, δ0)u3=0 = E
1
4
4 (τ1)E

1
4
4 (τ2).

By comparing the first few coefficients of the actual solutions �(u, δi) in the u3 → 0
limit, we can uniquely identify

τ1(u) = T1(u), τ2(u) = T1(u) + T2(u) .

Hence, Lemma 4 is established. Lemma 3 is proven by transforming back to the u1

and u2 variables. �
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Restricted to a K3 fiber of π : X → P1, we have

δ1 = 2F + S, δ2 = F.

The coordinates 2πiτ1 and 2πiτ2 correspond to the divisor basis

L2 = F + S, L1 = F

of the K3 fiber. Since the variables q1 and q2 of Section 2 measure degrees against
L1 and L2, we see that

q̂1 = q2 and q̂2 = q1

for the fiber geometry.

3.4. B-model. The mirror transformation results of Section 3.3 together with a B-
model calculation of the periods will be used to prove the following result discovered
by Klemm, Mayr, and Lerche [24].

Proposition 5. We have

2 +
∑

(d1,d2)∈P
d32N

X
0,(d1,d2)

qd1
1 qd2

2 = 2
E4(q1)E6(q1)

η24(q1)

E4(q2)

j(q1)− j(q2)
.

The left side of Proposition 5 is the left side of Proposition 4 with an added
degree 0 constant 2.

Proof. We will use following universal expression for the Gromov-Witten invariants
of X in terms of the periods of the mirror:

2 +
∑

(d1,d2)∈P
d32N

X
0,(d1,d2)

qd1
1 qd2

2

= lim
q3→0

1

�(u(T ), δ0)2

3∑
i,j,k=1

∂ui

∂τ1

∂uj

∂τ1

∂uk

∂τ1
Yi,j,k(u(T )),

where the Yi,j,k are the Yukawa couplings of the mirror family; see [9, 24].
The periods Yi,j,k can be explicitly computed via Griffith transversality [24] and

greatly simplify in the q3 → 0 limit. We tabulate the results below:

Y111 =
8(1− ũ1)

ũ3
1Δ1

, Y133 =
2ũ1(1− ũ1)

ũ3Δ1
,

Y112 =
2(1− ũ1)

2 + ũ2
1(ũ2 − ũ3)

ũ2
1ũ2Δ1

, Y222 =
(1− 2ũ1)A2

2ũ2
2Δ1Δ2

,

Y113 =
2(1− ũ1)

2 + ũ2
1(ũ3 − ũ2)

ũ2
1ũ3Δ1

, Y223 =
(1− 2ũ1)A3

2ũ3ũ2Δ1Δ2
,

Y122 =
2ũ1(1− ũ1)

ũ2Δ1
, Y233 =

(1− 2ũ1)A2

2ũ3ũ2Δ1Δ2
,

Y123 =
(1− ũ1)

(
(1− ũ1)

2 − (ũ2 + ũ3)ũ
2
1

)
ũ1ũ2ũ3Δ1

, Y333 =
(1− 2ũ1)A3

2ũ2
3Δ1Δ2

.

Here, we have introduced the variables

ũ1 = 432u1, ũ2 = 4u2, ũ3 = 4u3
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and the discriminant loci

(34)
Δ1 = (1− ũ1)

4 − 2(ũ2 + ũ3)ũ
2
1(1− ũ1)

2 + (ũ2 − ũ3)
2ũ4

1,

Δ2 = (1− ũ2 − ũ3)
2 − 4ũ2ũ3.

The quantities A2 and A3 are defined by

(35)
A2 = (1 + ũ2 − ũ3) (1− ũ1)

2
+ ũ2

1 (1− ũ3 − 3 ũ2) (ũ2 − ũ3) ,

A3 = (1 + ũ3 − ũ2) (1− ũ1)
2 + ũ2

1 (1− ũ2 − 3 ũ3) (ũ3 − ũ2) .

The normalizations of the Yukawa couplings Yi,j,k are fixed by the classical inter-
sections.

The leading behavior of the mirror map for u1, u2 is obtained by rewriting Lemma
3 in terms of E4(τi) and E6(τi) as

(36)

u1 =
1

864

(
1− E6(τ1)E6(τ2)

E4(τ1)
3
2 E4(τ2)

3
2

)
+O(q3) ,

u2 =

(
E4(τ1)

3 − E6(τ1)
2
) (

E4(τ2)
3 − E6(τ2)

2
)

4
(
E4(τ1)

3
2 E4(τ2)

3
2 − E6(τ1)E6(τ2)

)2 +O(q3).

Denote the leading behavior of the last mirror map by

(37) u3 = q3f3(q̂1, q̂2) +O(q23) .

The derivatives of the mirror maps with respect to T2 are easily evaluated using
the standard identities

q
d

dq
E2 = 1

12 (E
2
2 − E4),

q
d

dq
E4 = 1

3 (E2E4 − E6),

q
d

dq
E6 = 1

2 (E2E6 − E2
4),

q
d

dq
j = −j

E6

E4
.

We find, to leading order in q3,

∂u1

∂τ1
=

E6(τ2) (E4(τ1)
3−E6(τ1)

2)
1728E4(τ2)

3
2 E4(τ1)

5
2

,

∂u2

∂τ1
=

√
E4(τ1) (E4(τ2)

3−E6(τ2)
2)

(
−
(
E4(τ1)

3
2 E6(τ2)

)
+E4(τ2)

3
2 E6(τ1)

)
(E4(τ1)

3−E6(τ1)
2)

4
(
E4(τ2)

3
2 E4(τ1)

3
2 −E6(τ2)E6(τ1)

)3 .

The derivative ∂u3

∂τ1
can be written to this order as

(38)
∂u3

∂τ1
=

u3

f3(q̂1, q̂2)

∂

∂τ1
f3(q̂1, q̂2) +O(u2

3) .

There are many simplifications in the limit u3 → 0. First the triple couplings

Y133, Y233, Y333
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do not have enough inverse powers of u3 and therefore do not contribute by the
vanishing (38). Second, the surviving Yi,j,k simplify in the limit. We evaluate

(39) lim
q3→0

1

�(u(T ), δ0)2

3∑
i,j,k=1

∂ui

∂τ1

∂uj

∂τ1

∂uk

∂τ1
Yi,j,k(u(T ))

= −2
E4(τ2)E4(τ1)E6(τ2)

(
E4(τ1)

3 − E6(τ1)
2
)

E4(τ2)
3
E6(τ1)

2 − E4(τ1)
3
E6(τ2)

2 .

The possible linear dependence on f3(q̂1, q̂2) drops out as claimed in [24]! Using
the standard identities

j =
E3

4

η24
, η24 = E3

4 − E2
6 ,

we obtain the right side of Proposition 5. �

4. The Harvey-Moore identity

4.1. Proof of Proposition 4. After evaluating the left side via Proposition 5 and
dividing by 2, Proposition 4 amounts to a modular form identity. Let

f(τ ) =
E4(τ )E6(τ )

η(τ )24
=

∞∑
n=−1

c(n)qn,

where q = exp(2πiτ ). Then, we must prove

(40)
f(τ1)E4(τ2)

j(τ1)− j(τ2)
=

q1
q1 − q2

+ E4(τ2)−
∑

d,k,	>0


3c(k
) qkd1 q	d2 .

Equation (40) is the Harvey-Moore identity conjectured in [18].

4.2. Zagier’s proof of the Harvey-Moore identity. The Harvey-Moore iden-
tity implies Proposition 4 and concludes the proof of the Yau-Zaslow conjecture.
We present here Zagier’s argument from [38].

Let Sk ⊂ Mk ⊂ M !
k denote the spaces of cusp forms, modular forms, and weakly

holomorphic15 modular forms for Γ = SL(2,Z). Certainly

f(τ ) ∈ M !
−2.

For each n ≥ 0, there is a unique function Fn ∈ M !
4 satisfying

Fn(τ ) = q−n +O(q)

as I(τ ) → ∞. Uniqueness follows from the vanishing of S4. Existence follows by
writing Fn(τ ) as E4(τ ) times a polynomial in j(τ ),

F0 = E4, F1 = E4(j − 984), F2 = E4(j
2 − 1728j + 393768) . . . .

We draw several consequences:

(i) F1|Tn = n3Fn for all n ≥ 1, where Tn is the nth Hecke operator in weight
4. Indeed, Tn sends M !

4 to itself and, by standard formulas for the action
of Tn on Fourier expansions, Tn sends q−1 +O(q) to n3q−n +O(q).

15Holomorphic except for a possible pole at infinity.
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(ii) F1 = −f ′′′, where the prime denotes differentiation by

1

2πi

d

dτ
= q

d

dq
.

We see that f ′′′ lies in M !
4 by the k = 4 case of Bol’s identity,

dk−1

dτk−1
(f |2−kγ) =

(
dk−1f

dτk−1

)
|kγ ∀γ ∈ Γ.

Since the Fourier expansion of f ′′′ begins as −q−1 + O(q), the claim is
proven.

(iii) For I(τ1) > maxγ∈Γ I(γτ2),

f(τ1)E4(τ2)

j(τ1)− j(τ2)
=

∞∑
n=0

Fn(τ2)q
n
1 .

Let L(τ1, τ2) denote the left side of (4.2). We see that L(τ1, τ2) is a mero-
morphic modular form in τ2 with a simple pole of residue − 1

2πi at τ2 = τ1
(since j′ = −E2

4E6/η
24) and no poles outside Γτ1. Moreover, L(τ1, τ2)

tends to 0 as I(τ2) → ∞. These properties characterize L(τ1, τ2) uniquely
and show that the nth Fourier coefficient with respect to τ1 for I(τ1) → ∞
has the properties characterizing Fn(τ2).

Combining (i) and (ii) with the formula for the action of Tn on Fourier expan-
sions, we obtain

Fn(τ ) = (−n−3f ′′′)|Tn = n−3

(
q−1 −

∞∑
m=1

m3c(m) qm

)
|Tn(41)

= q−n −
∑

k,�,d>0

kd=n


3c(k
) q	d

for n > 0. The Harvey-Moore identity follows from (41) and (iii) together with the
equality F0 = E4. �
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