
JOURNAL OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 23, Number 4, October 2010, Pages 1187–1195
S 0894-0347(2010)00673-X
Article electronically published on May 26, 2010

THE COMPLEX MONGE-AMPÈRE EQUATION

ON COMPACT HERMITIAN MANIFOLDS

VALENTINO TOSATTI AND BEN WEINKOVE

1. Introduction

Let (M, g) be a compact Hermitian manifold (without boundary) of complex
dimension n ≥ 2 and write ω for the corresponding real (1, 1)-form

ω =
√
−1

∑
i,j

gijdz
i ∧ dzj .

For a smooth real-valued function F on M , consider the complex Monge-Ampère
equation

(ω +
√
−1∂∂ϕ)n = eFωn, with

ω +
√
−1∂∂ϕ > 0, sup

M
ϕ = 0,

(1.1)

for a real-valued function ϕ.
Our main result is as follows.

Main Theorem. Let ϕ be a smooth solution of the complex Monge-Ampère equa-
tion (1.1). Then there are uniform C∞ a priori estimates on ϕ depending only on
(M,ω) and F .

A corollary of this is that we can solve (1.1) uniquely after adding a constant to
F , or, equivalently, up to scaling the volume form eFωn.

Corollary 1. For every smooth real-valued function F on M there exist a unique
real number b and a unique smooth real-valued function ϕ on M solving

(ω +
√
−1∂∂ϕ)n = eF+bωn, with

ω +
√
−1∂∂ϕ > 0, sup

M
ϕ = 0.

(1.2)

In the case of ω Kähler, that is, when dω = 0, this result is precisely the cele-
brated Calabi Conjecture [Ca] proved by Yau [Ya]. We note here that if ω satisfies

(1.3) ∂∂ωk = 0, for k = 1, 2
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1188 VALENTINO TOSATTI AND BEN WEINKOVE

(in particular if ω is closed), then the constant b must equal

(1.4) log

∫
M

ωn∫
M

eFωn
.

In fact, one can easily see that (1.3) implies that ∂∂ωk = 0 for all 1 ≤ k ≤ n − 1
(see for example [GL]), and integrating (1.2) over M and repeatedly using Stokes’s
Theorem, one sees that indeed b equals (1.4).

We mention now some special cases where the results of the Main Theorem
and Corollary 1 are already known. Cherrier [Ch] gave a proof when the complex
dimension is two or if ω is balanced, that is, d(ωn−1) = 0 (an alternative proof
was very recently given in [TW]). In addition, Cherrier [Ch] dealt with the case of
conformally Kähler and considered a technical assumption which is slightly weaker
than balanced; see also the related work of Hanani [Ha]. Guan and Li [GL] gave a
proof under the assumption (1.3). For further background we refer the reader to
[TW] and the references therein.

As the reader will see in the proof below, we note that the key L∞ bound of
ϕ in the Main Theorem follows from combining a lemma of [Ch] with some recent
estimates of the authors [TW].

Finally, we remark that one can give a geometric interpretation of (1.2) in terms
of the first Chern class c1(M) of M . We denote by Ric(ω) the first Chern form of
the Chern connection of ω, which is a closed form cohomologous to c1(M). We then

consider the real Bott-Chern space H1,1
BC(X,R) of closed real (1, 1)-forms modulo

the image of
√
−1∂∂ acting on real functions. It has a natural surjection to the

familiar space H1,1(M,R), which is an isomorphism if and only if b1(M) = 2h0,1

[G2] (in particular if M is Kähler). The form Ric(ω) determines a class cBC
1 (M)

in H1,1
BC(M,R) which maps to the usual first Chern class c1(M) via the above

surjection. Then from our Main Theorem we get the following Hermitian version
of the Calabi Conjecture (see also a related question of Gauduchon [G2, IV.5]):

Corollary 2. Every representative of the first Bott-Chern class cBC
1 (M) can be

represented as the first Chern form of a Hermitian metric of the form ω+
√
−1∂∂ϕ.

To see why this holds, just notice that (1.2) holds for some constant b if and only
if

(1.5) Ric(ω +
√
−1∂∂ϕ) = Ric(ω)−

√
−1

2π
∂∂F

and that by definition every form representing cBC
1 (M) can be written as Ric(ω)−√

−1
2π ∂∂F for some function F . We note here that in the case n = 2, Corollary 2 of

[TW] gives a criterion to decide which representatives of c1(M) can be written in
this form.

2. Proof of the Main Theorem

By the results of [Ch], [GL], [Zh] it suffices to obtain a uniform bound of ϕ in the
L∞ norm. Indeed, by extending the second-order estimate on ϕ of Yau [Ya] (and
Aubin [Au]), Cherrier [Ch] has shown, for general ω, that a uniform L∞ bound on
ϕ implies that the metric ω +

√
−1∂∂ϕ is uniformly equivalent to ω. Moreover,

generalizing Yau’s third-order estimate [Ya], Cherrier shows that given this one can
then bound ω+

√
−1∂∂ϕ in C1. Higher-order estimates then follow from standard
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COMPLEX MONGE-AMPÈRE EQUATION ON HERMITIAN MANIFOLDS 1189

elliptic theory. A similar second-order estimate was also proved by Guan and Li
[GL] and Zhang [Zh] for general ω and sharpened in [TW] in the cases of n = 2
or ω balanced. It is also possible to avoid the third-order estimate by using the
Evans-Krylov theory, as in [GL] and [TW].

We remark that our L∞ bound on ϕ depends only on (M,ω) and supM F , as
in Yau’s estimate for the Kähler case [Ya]. In particular, the L∞ bound does not
depend on infM F . In the course of the proof, we say that a constant is uniform if it
depends only on the data (M,ω) and supM F . We will often write such a constant
as C, which may differ from line to line. If we say that a constant depends only on
a quantity Q, then we mean that it depends only on Q, (M,ω), and supM F .

Our goal is thus to give a uniform bound for ϕ. We begin with a lemma which
can be found in [Ch]. For the convenience of the reader, we provide a proof. We
use the notation of exterior products instead of the multilinear algebra calculations
of [Ch].

Lemma 2.1. There are uniform constants C, p0 such that for all p ≥ p0 we have∫
M

|∂e−
p
2ϕ|2gωn ≤ Cp

∫
M

e−pϕωn.

Proof. From now on we will use the shorthand notation ωϕ = ω+
√
−1∂∂ϕ. Let α

be the (n− 1, n− 1)-form given by

α =

n−1∑
k=0

ωk
ϕ ∧ ωn−k−1.

We compute, using the equation (1.1) and integrating by parts,

C

∫
M

e−pϕωn ≥
∫
M

e−pϕ(ωn
ϕ − ωn)

=

∫
M

e−pϕ
√
−1∂∂ϕ ∧ α

= p

∫
M

e−pϕ
√
−1∂ϕ ∧ ∂ϕ ∧ α+

∫
M

e−pϕ
√
−1 ∂ϕ ∧ ∂α.(2.1)

The first term on the right-hand side of (2.1) is positive, and we are going to use
part of it to deal with the second one. Notice that

∂α = n
n−2∑
k=0

ωk
ϕ ∧ ωn−k−2 ∧ ∂ω.

Since ∂ω is a fixed tensor, there is a constant C so that for any ε > 0 and any k
we have the elementary pointwise inequality∣∣∣∣∣

√
−1 ∂ϕ ∧ ∂ω ∧ ωk

ϕ ∧ ωn−k−2

ωn

∣∣∣∣∣
≤ C

ε

√
−1∂ϕ ∧ ∂ϕ ∧ ωk

ϕ ∧ ωn−k−1

ωn
+ εC

ωk
ϕ ∧ ωn−k

ωn
(2.2)
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that the reader can verify by choosing local coordinates at a point that make ω the
identity and ωϕ diagonal. Applying (2.2), we have for any ε > 0 and any p,

−
∫
M

e−pϕ
√
−1 ∂ϕ ∧ ∂α = −n

n−2∑
k=0

∫
M

e−pϕ
√
−1 ∂ϕ ∧ ωk

ϕ ∧ ωn−k−2 ∧ ∂ω

≤ C

ε

n−2∑
k=0

∫
M

e−pϕ
√
−1∂ϕ ∧ ∂ϕ ∧ ωk

ϕ ∧ ωn−k−1

+ εC
n−2∑
k=0

∫
M

e−pϕωk
ϕ ∧ ωn−k.

Now if we choose p0/2 ≥ C/ε, we see that if 0 < ε ≤ 1, then for p ≥ p0,

−
∫
M

e−pϕ
√
−1 ∂ϕ ∧ ∂α ≤ p

2

∫
M

e−pϕ
√
−1∂ϕ ∧ ∂ϕ ∧ α+ C

∫
M

e−pϕωn

+ εC

n−2∑
k=1

∫
M

e−pϕωk
ϕ ∧ ωn−k.

Combining this with (2.1), we see that for any 0 < ε < 1 there exists p0 depending
only on ε such that for p ≥ p0,

(2.3)
p

2

∫
M

e−pϕ
√
−1∂ϕ ∧ ∂ϕ ∧ α ≤ C

∫
M

e−pϕωn + εC

n−2∑
k=1

∫
M

e−pϕωk
ϕ ∧ ωn−k.

We now claim the following. There exist uniform constants C2, . . . , Cn and ε0
such that for all ε with 0 < ε ≤ ε0, there exists a constant p0 depending only on ε
such that for all p ≥ p0 we have for i = 2, . . . , n,

(2.4)
p

2i−1

∫
M

e−pϕ
√
−1∂ϕ∧∂ϕ∧α ≤ Ci

∫
M

e−pϕωn+εCi

n−i∑
k=1

∫
M

e−pϕωk
ϕ∧ωn−k.

Given the claim, the lemma follows. Indeed once we have the statement with i = n,
then, fixing ε = ε0, we have for p ≥ p0,

∫
M

|∂e−
p
2ϕ|2gωn =

np2

4

∫
M

e−pϕ
√
−1∂ϕ ∧ ∂ϕ ∧ ωn−1

≤ np2

4

∫
M

e−pϕ
√
−1∂ϕ ∧ ∂ϕ ∧ α

≤ n2n−3Cnp

∫
M

e−pϕωn,

as required.
We will prove the claim by induction on i. By (2.3) we have already proved the

statement for i = 2. So we assume the induction statement (2.4) for i and prove it
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COMPLEX MONGE-AMPÈRE EQUATION ON HERMITIAN MANIFOLDS 1191

for i+ 1. We compute

εCi

n−i∑
k=1

∫
M

e−pϕωk
ϕ ∧ ωn−k = εCi

n−i∑
k=1

∫
M

e−pϕωk−1
ϕ ∧ ωn−k+1

+ εCi

n−i∑
k=1

∫
M

e−pϕ
√
−1∂∂ϕ ∧ ωk−1

ϕ ∧ ωn−k

= A1 +A2,

(2.5)

where

A1 = εCi

n−i−1∑
k=0

∫
M

e−pϕωk
ϕ ∧ ωn−k,

A2 = εCi

n−i−1∑
k=0

∫
M

e−pϕ
√
−1∂∂ϕ ∧ ωk

ϕ ∧ ωn−k−1.

The term A1 is already acceptable for the induction. For A2 we integrate by
parts to obtain

A2 = εCip

n−i−1∑
k=0

∫
M

e−pϕ
√
−1∂ϕ ∧ ∂ϕ ∧ ωk

ϕ ∧ ωn−k−1

+ εCi

n−i−1∑
k=1

k

∫
M

e−pϕ
√
−1 ∂ϕ ∧ ωk−1

ϕ ∧ ωn−k−1 ∧ ∂ω

+ εCi

n−i−1∑
k=0

(n− k − 1)

∫
M

e−pϕ
√
−1 ∂ϕ ∧ ωk

ϕ ∧ ωn−k−2 ∧ ∂ω

= B1 +B2 +B3,

(2.6)

where

B1 = εCip

n−i−1∑
k=0

∫
M

e−pϕ
√
−1∂ϕ ∧ ∂ϕ ∧ ωk

ϕ ∧ ωn−k−1

B2 = εCi

n−i−2∑
k=0

(k + 1)

∫
M

e−pϕ
√
−1 ∂ϕ ∧ ωk

ϕ ∧ ωn−k−2 ∧ ∂ω

B3 = εCi

n−i−1∑
k=0

(n− k − 1)

∫
M

e−pϕ
√
−1 ∂ϕ ∧ ωk

ϕ ∧ ωn−k−2 ∧ ∂ω.

Choosing ε0 such that ε0Ci < 2−i−1, we have for ε ≤ ε0 and p ≥ p0,

(2.7) B1 ≤ p

2i+1

∫
M

e−pϕ
√
−1∂ϕ ∧ ∂ϕ ∧ α.

For the terms B2 and B3 we use again (2.2) to obtain

B2 +B3 ≤ nCiC
n−i−1∑
k=0

∫
M

e−pϕ
√
−1∂ϕ ∧ ∂ϕ ∧ ωk

ϕ ∧ ωn−k−1

+ ε2nCiC
n−i−1∑
k=0

∫
M

e−pϕωk
ϕ ∧ ωn−k.

(2.8)
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Notice that the second term on the right-hand side of (2.8) is acceptable for the
induction. Moreover, we may assume that p0 ≥ 2i+1nCiC and thus for p ≥ p0,

B2 +B3 ≤ p

2i+1

∫
M

e−pϕ
√
−1∂ϕ ∧ ∂ϕ ∧ α

+ ε2nCiC

n−i−1∑
k=0

∫
M

e−pϕωk
ϕ ∧ ωn−k.

(2.9)

Combining the inductive hypothesis (2.4) with (2.5), (2.6), (2.7), (2.9), we obtain
for p ≥ p0,

p

2i

∫
M

e−pϕ
√
−1∂ϕ ∧ ∂ϕ ∧ α ≤ Ci+1

∫
M

e−pϕωn + εCi+1

n−i−1∑
k=1

∫
M

e−pϕωk
ϕ ∧ ωn−k,

completing the inductive step. This finishes the proof of the claim and thus the
lemma. �

We now complete the proof of the Main Theorem. Using Lemma 2.1 and the
Sobolev inequality, we have for β = n

n−1 > 1,(∫
M

e−pβϕωn

)1/β

≤ C

(∫
M

|∂e−
p
2ϕ|2ωn +

∫
M

e−pϕωn

)

≤ Cp

∫
M

e−pϕωn,

for all p ≥ p0. Thus

‖e−ϕ‖Lpβ ≤ C1/pp1/p‖e−ϕ‖Lp .

Since this holds for all p ≥ p0, we can iterate this estimate in a standard way to
obtain

‖e−ϕ‖L∞ ≤ C‖e−ϕ‖Lp0 ,

which is equivalent to

e−p0 infM ϕ ≤ C

∫
M

e−p0ϕωn.

We now make use of a result from [TW]:

Lemma 2.2. Let f be a smooth function on (M,ω). Write dμ = ωn/
∫
M

ωn. If
there exists a constant C1 such that

(2.10) e− infM f ≤ eC1

∫
M

e−fdμ,

then

(2.11) |{f ≤ inf
M

f + C1 + 1}| ≥ e−C1

4
,

where | · | denotes the volume of the set with respect to dμ.

Proof. See [TW, Lemma 3.2]. �

Applying this lemma to f = p0ϕ, we see that there exist uniform constants C,
δ > 0 so that

(2.12) |{ϕ ≤ inf
M

ϕ+ C}| ≥ δ.
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We remark that, in [TW], the bound (2.12) is established whenever one has the
improved second-order estimate,

(2.13) trωωϕ ≤ CeA(ϕ−infM ϕ),

for uniform A and C. It is shown in [TW] that (2.13) holds if n = 2 or ω is balanced.
The L∞ bound on ϕ, and hence the Main Theorem, now follow from the argu-

ments of [TW]. However, we include an outline of these arguments for the reader’s
convenience. Recall that, from [G1], if (M,ω) is a compact Hermitian manifold,
then there exists a unique smooth function u : M → R with supM u = 0 such that
the metric ωG = euω is Gauduchon, that is, it satisfies

(2.14) ∂∂(ωn−1
G ) = 0.

Writing ΔG for the complex Laplacian associated to ωG (which differs from the
Levi-Civita Laplacian in general), we have the following lemma (cf. [TW, Lemma
3.4]).

Lemma 2.3. Let M be a compact complex manifold of complex dimension n with
a Gauduchon metric ωG. If ψ is a smooth nonnegative function on M with

ΔGψ ≥ −C0,

then there exist constants C1 and C2 depending only on (M,ωG) and C0 such that

(2.15)

∫
M

|∂ψ
p+1
2 |2ωG

ωn
G ≤ C1p

∫
M

ψpωn
G for all p ≥ 1

and

(2.16) sup
M

ψ ≤ C2 max

{∫
M

ψ ωn
G, 1

}
.

Proof. Compute for p ≥ 1,∫
M

|∂ψ
p+1
2 |2ωG

ωn
G =

n(p+ 1)2

4

∫
M

√
−1ψp−1∂ψ ∧ ∂ψ ∧ ωn−1

G

=
n(p+ 1)2

4p

∫
M

√
−1∂ψp ∧ ∂ψ ∧ ωn−1

G

=
(p+ 1)2

4p

∫
M

ψp(−ΔGψ)ω
n
G

+
n(p+ 1)

4p

∫
M

√
−1 ∂ψp+1 ∧ ∂ωn−1

G

≤ C
(p+ 1)2

4p

∫
M

ψpωn
G,

thus establishing (2.15). The inequality (2.16) then follows by a standard iteration
argument, using the Sobolev inequality for the metric ωG. Indeed, writing q = p+1
and β = n

n−1 , we obtain for q ≥ 2,

(∫
M

ψqβωn
G

)1/β

≤ Cqmax

{∫
M

ψqωn
G, 1

}
.
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1194 VALENTINO TOSATTI AND BEN WEINKOVE

By repeatedly replacing q by qβ and iterating, we have, after setting q = 2,

sup
M

ψ ≤ Cmax

{(∫
M

ψ2ωn
G

)1/2

, 1

}
≤ Cmax

{(
sup
M

ψ

)1/2 (∫
M

ψ ωn
G

)1/2

, 1

}
,

and (2.16) follows. �

We apply Lemma 2.3 to the function ψ = ϕ − infM ϕ, which satisfies ΔGψ =
e−uΔψ > −C, where Δ is the complex Laplacian with respect to ω. In light of
(2.16), once we bound the L1 norm of ψ, the Main Theorem follows. Denoting by
ψ the average of ψ with respect to ωn

G, we obtain from the Poincaré inequality and
(2.15) with p = 1

(2.17) ‖ψ − ψ‖L2 ≤ C

(∫
M

|∂ψ|2ωG
ωn
G

)1/2

≤ C‖ψ‖1/2L1 .

In (2.17) and the following we are using Lq norms with respect to the volume form
ωn
G, which are equivalent to Lq norms with respect to dμ. Using (2.12), we see that

the set S := {ψ ≤ C} satisfies |S|G ≥ δ for a uniform δ > 0, where | · |G denotes
the volume of a set with respect to ωn

G. Hence

δ∫
M

ωn
G

∫
M

ψωn
G = δψ ≤

∫
S

ψωn
G ≤

∫
S

(|ψ − ψ|+ C)ωn
G ≤

∫
M

|ψ − ψ|ωn
G + C.

Then,

‖ψ‖L1 ≤ C(‖ψ − ψ‖L1 + 1) ≤ C(‖ψ − ψ‖L2 + 1) ≤ C(‖ψ‖1/2L1 + 1),

which shows that ψ is uniformly bounded in L1. This completes the proof of the
Main Theorem.

Finally we mention that Corollary 1 follows from the argument of Cherrier [Ch],
which uses results from [De], or for another proof, see [TW, Corollary 1].
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