Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2020 MCQ for Journal of the American Mathematical Society is 4.79.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The complex Monge-Ampère equation on compact Hermitian manifolds
HTML articles powered by AMS MathViewer

by Valentino Tosatti and Ben Weinkove PDF
J. Amer. Math. Soc. 23 (2010), 1187-1195 Request permission

Abstract:

We show that, up to scaling, the complex Monge-Ampère equation on compact Hermitian manifolds always admits a smooth solution.
References
  • Thierry Aubin, Équations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sci. Math. (2) 102 (1978), no. 1, 63–95 (French, with English summary). MR 494932
  • Eugenio Calabi, On Kähler manifolds with vanishing canonical class, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N.J., 1957, pp. 78–89. MR 0085583
  • Pascal Cherrier, Équations de Monge-Ampère sur les variétés hermitiennes compactes, Bull. Sci. Math. (2) 111 (1987), no. 4, 343–385 (French, with English summary). MR 921559
  • Philippe Delanoë, Équations du type de Monge-Ampère sur les variétés riemanniennes compactes. II, J. Functional Analysis 41 (1981), no. 3, 341–353 (French, with English summary). MR 619957, DOI 10.1016/0022-1236(81)90080-X
  • Paul Gauduchon, Le théorème de l’excentricité nulle, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), no. 5, A387–A390 (French, with English summary). MR 470920
  • Paul Gauduchon, La $1$-forme de torsion d’une variété hermitienne compacte, Math. Ann. 267 (1984), no. 4, 495–518 (French). MR 742896, DOI 10.1007/BF01455968
  • Guan, B., Li, Q. Complex Monge-Ampère equations and totally real submanifolds, Adv. Math. (2010), doi:10.1016/j.aim.2010.03.019
  • Abdellah Hanani, Équations du type de Monge-Ampère sur les variétés hermitiennes compactes, J. Funct. Anal. 137 (1996), no. 1, 49–75 (French, with French summary). MR 1383012, DOI 10.1006/jfan.1996.0040
  • Tosatti, V., Weinkove, B. Estimates for the complex Monge-Ampère equation on Hermitian and balanced manifolds, preprint, arXiv:0909.4496, to appear in Asian J. Math. 2010.
  • Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. MR 480350, DOI 10.1002/cpa.3160310304
  • Zhang, X. A priori estimates for complex Monge-Ampère equation on Hermitian manifolds, Int. Math. Res. Not. 2010, Art. ID rnq029, 23 pp.
Similar Articles
  • Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 53C55, 32W20, 32U05
  • Retrieve articles in all journals with MSC (2010): 53C55, 32W20, 32U05
Additional Information
  • Valentino Tosatti
  • Affiliation: Department of Mathematics, Columbia University, 2990 Broadway, New York, New York 10027
  • MR Author ID: 822462
  • Email: tosatti@math.columbia.edu
  • Ben Weinkove
  • Affiliation: Department of Mathematics, University of California San Diego, 9500 Gilman Drive #0112, La Jolla, California 92093
  • Email: weinkove@math.ucsd.edu
  • Received by editor(s): November 11, 2009
  • Received by editor(s) in revised form: May 12, 2010
  • Published electronically: May 26, 2010
  • Additional Notes: This research is supported in part by National Science Foundation grant DMS-08-48193. The second author is also supported in part by a Sloan Foundation fellowship.
  • © Copyright 2010 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: J. Amer. Math. Soc. 23 (2010), 1187-1195
  • MSC (2010): Primary 53C55; Secondary 32W20, 32U05
  • DOI: https://doi.org/10.1090/S0894-0347-2010-00673-X
  • MathSciNet review: 2669712