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STATIONARY MEASURES AND EQUIDISTRIBUTION FOR

ORBITS OF NONABELIAN SEMIGROUPS ON THE TORUS

JEAN BOURGAIN, ALEX FURMAN, ELON LINDENSTRAUSS, AND SHAHAR MOZES

1. Introduction and statement of the main results

Let Γ be a semigroup of d × d nonsingular integer matrices, and consider the
action of Γ on the torus T

d. We assume throughout that the action is strongly
irreducible: there is no subtorus invariant under a finite index subsemigroup of Γ.

The strong irreducibility assumption in particular implies that Γ acts ergodically
on T

d (equipped with the Lebesgue measure m). Therefore the Γ-orbit of Lebesgue
almost every x ∈ T

d is dense and in an appropriate sense even becomes equidis-
tributed. However, when Γ is cyclic, there is a set of full Hausdorff dimension of
exceptional points x for which Γ.x fails to be dense.

When Γ is bigger, the distribution of individual Γ-orbits can be expected to be
much more restrictive. An important result in this direction is due to Furstenberg,
who showed for d = 1 (in which case Γ < Z

× and in particular abelian) that
if Γ is not virtually cyclic, Γ.x is dense for all irrational x ∈ T, and moreover
for any open U ⊂ T there are only finitely many rational points whose Γ-orbits
avoids U . This has been extended by Berend [1] to actions of abelian semigroups
of toral endomorphisms on T

d. However, in both cases, while the orbit closure
of individual orbits are very restricted, there is some flexibility on how such an
orbit distributes; for example consider the orbit of x =

∑∞
k=1 2

−k! ∈ T under the
semigroup Γ = 〈2, 3〉.

In this paper we consider the action of semigroups Γ which satisfy the following
three conditions:

(Γ-0) Γ < SLd(R),
(Γ-1) Γ acts strongly irreducibly on R

d,
(Γ-2) Γ contains a proximal element: there is some g ∈ Γ with a dominant

eigenvalue which is a simple root of its characteristic polynomial.

Note that (Γ-1) is substantially stronger than the requirement we have already im-
posed that Γ acts strongly irreducibly on T

d. In particular, for d > 1 an abelian
semigroup never satisfies condition (Γ-1); indeed, the group generated by a semi-
group satisfying (Γ-1) is nonamenable. Assumption (Γ-2) is a technical condition
which is in particular satisfied when Γ is a Zariski dense semigroup of SLd(Z) [16].
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While a substantial part of the argument works without assumption (Γ-0), without
it simple counterexamples can be given to Theorem A below, similar to the example
above of a nonequidistributed orbit for the semigroup 〈2, 3〉.

Under these (and more general) conditions, R. Muchnik [27] and Y. Guivarc’h
and A. Starkov [19] proved the analog of the theorems of H. Furstenberg and
D. Berend, namely that for any x ∈ T

d with at least one irrational coordinate
Γ.x is dense, and moreover that there are only finitely many rational x whose
orbits avoid a given open neighborhood in T

d.
We study the quantitative distribution properties of Γ-orbits. Since Γ is not

amenable, we do this by considering a random walk on Γ.x corresponding to a
probability measure ν on Γ. We will assume that ν satisfies the moment condition

(1.1)
∑

g∈Γ

ν(g)‖g‖ε < ∞ for some ε > 0.

Given a probability measure ν on Γ and a probability measure μ on T
d, the

convolution ν ∗ μ ∈ T
d is

ν ∗ μ =
∑

g∈Γ

ν(g) g∗μ.

Furstenberg [14] has shown that under assumption (Γ-1) the top Liapunov exponent
defined by

λ1(ν) = lim
n→∞

1

n
log ‖g1g2 · · · gn‖ , νZ+ -a.s.,

is positive. Assumption (Γ-2) guarantees that this Liapunov exponent is simple
[16, 17]. Our main theorem is the following:

Theorem A. Let Γ < SLd(R) satisfy (Γ-1) and (Γ-2) above, and let ν be a proba-
bility measure supported on a set of generators of Γ satisfying (1.1). Then for any
0 < λ < λ1(ν) there is a constant C = C(ν, λ) so that if for a point x ∈ T

d the
measure μn = ν∗n ∗ δx satisfies that for some a ∈ Z

d \ {0}

|μ̂n(a)| > t > 0, with n > C · log(2‖a‖
t

),

then x admits a rational approximation p/q for p ∈ Z
d and q ∈ Z+ satisfying

(1.2)

∥
∥
∥
∥x− p

q

∥
∥
∥
∥ < e−λn and |q| <

(
2‖a‖
t

)C

.

This theorem has several corollaries:

Corollary B. Let Γ and ν be as in Theorem A, and let x ∈ T
d \ (Q/Z)d. Then the

measures μn = ν∗n ∗ δx converge to the Haar measure m on T
d in weak-∗ topology.

This answers affirmatively a question of Guivarc’h in a private communication
and should be contrasted with the example given above for the case of d = 1. We
also have the following more quantitative equidistribution results:

Corollary C. Let Γ and ν be as in Theorem A, and let x ∈ T
d and μn = ν∗n ∗ δx.

Then there are c1, c2 depending only on ν so that the following holds:

(1) Assume x is Diophantine generic in the sense that for some M and Q

(1.3)

∥
∥
∥
∥x− p

q

∥
∥
∥
∥ > q−M for all integers q ≥ Q and p ∈ Z

d.
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Then for n > c1 logQ

max
b∈Zd,0<‖b‖<B

|μ̂n(b)| < Be−c2n/M .

(2) Assume x 
∈ (Q/Z)d. Then there is a sequence ni → ∞ along which

max
b∈Zd,0<‖b‖<ec2ni

|μ̂ni
(b)| < e−c2ni .

Our next corollary answers a question raised by Furstenberg in [12]. Recall that
a measure μ is said to be ν-stationary if ν ∗ μ = μ.

If the support of ν generates a semigroup Γ, any Γ-invariant probability measure
is ν-stationary for any probability measure ν on Γ, but the converse (even for a
fixed ν) is not true in general. Following Furstenberg ([12]), we say that an action
Γ � X is ν-stiff if any ν-stationary measure is Γ-invariant.

In his paper [12] Furstenberg shows that for carefully chosen ν on SLd(Z), namely
probability measures ν so that the corresponding stationary measure on the bound-
ary of SL(d,R) is absolutely continuous with respect to Lebesgue, the action of
SLd(Z) on T

d is ν-stiff. He then suggests that this should be true for any ν whose
support generates SLd(Z). The following corollary of our main theorem confirms
Furstenberg’s insight:

Theorem D. Let Γ < SLd(R) be a semigroup satisfying (Γ-1) and (Γ-2) above,
and let ν be a probability measure supported on a set of generators of Γ satisfying
(1.1). Then any ν-stationary measure μ on T

d is a convex combination of the Haar
measure on T

d and atomic measures supported by rational points. In particular, for
such ν the action of Γ on T

d is ν-stiff.

The results of this paper have been announced in [6]. Since then an alterna-
tive, ergodic theoretic, approach to Theorem D was discovered by Y. Benoist and
J. F. Quint [2]. This approach has the advantage of being more general; in partic-
ular, Benoist and Quint have been able to prove Theorem D without making the
assumption (Γ-2). However their ergodic theoretic argument is not quantitative,
certainly not in the sense of Theorem A. It also does not give equidistribution of
ν∗n ∗ δx as in Corollary B.

2. Deduction of corollaries from Theorem A

Is this short section, we deduce Corollaries B and C from Theorem A. The
deduction of Theorem D from Theorem A, or more precisely from the closely related
Proposition 3.1, is given at the beginning of the next section.

Proof of Corollary B given Theorem A. Let x ∈ T
d \ (Q/Z)d. Suppose that the

measures μn = ν∗n∗δx fail to converge to the Haar measure m. Then by Weyl’s
equidistribution criterion it follows that for some a ∈ T

d \ {0} and some sequence
ni → ∞

|μ̂ni
(a)| > t > 0 for all i.

It follows from Theorem A that there is a sequence of rational approximations pi

qi
tending to x with qi uniformly bounded—which of course is only possible if x is
rational. �
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Proof of Corollary C given Theorem A. We first prove assertion (1) of the corol-
lary. Let x be Diophantine generic in the sense of (1.3). Suppose that |μ̂n(b)| > t/B
for some b ∈ Z

d with 0 < ‖b‖ < B. Then as long as

(2.1) t > 1
2e

−n/C

for C = C(ν, λ1/2) as in Theorem A, by (1.2) there are p ∈ Z
d, q ∈ Z+ so that

∥
∥
∥
∥x− p

q

∥
∥
∥
∥ < e−λ1n/2 and 1 < q < (2t−1)C .

Chose c1 so that e−λ1n/2 < Q−2M if n ≥ c1 logQ; then if q < Q, we would have

that
∥
∥
∥x− Qp

Qq

∥
∥
∥ < (Qq)−M in contradiction to (1.3). It follows (using (1.3) once

again) that if n ≥ c1 logQ,

(2.2) e−λ1n/2 > q−M > C ′t−MC .

From (2.1) and (2.2) we now conclude that

t ≤ C ′′ max(e−n/C , e−λ1n/2MC),

establishing Corollary C, part(1).
Suppose now that for some x 
∈ (Q/Z)d part (2) of the corollary does not hold,

i.e., that for every n there is a bn ∈ Z
d so that

|μ̂n(bn)| ≥ e−c2n and ‖bn‖ < ec2n.

Then by Theorem A, as long as 2Cc2 < 1 and n is large enough, there is a sequence
of rational points pn

qn
so that

(2.3)

∥
∥
∥
∥x− pn

qn

∥
∥
∥
∥ < e−λ1n/2 and |qn| < 2Ce2c2Cn.

Since x is irrational, the sequence qn is not eventually constant, so there are ar-
bitrarily large n for which pn

qn

= pn+1

qn+1
. But then (2.3) applied for both n, n + 1

gives

2−2Ce−4Cc2(n+1) ≤ (qnqn+1)
−1 ≤

∥
∥
∥
∥
pn
qn

− pn+1

qn+1

∥
∥
∥
∥ ≤ 2e−λ1n/2,

which is a contradiction for large n if 8Cc2 < λ1. �

3. Outline of the proof

Given a positive integer Q, let

RQ =
⋃

q≤Q

{

(
p1
q
, . . . ,

pd
q
) ∈ T

d : p1, . . . , pd ∈ {0, . . . , q − 1}
}

denote the set of rational points on the torus with denominators q ≤ Q. For r > 0
let WQ,r =

⋃
x∈RQ

Bx,r denote the r-neighborhood of RQ. We prove Theorem A

by establishing the following:

Proposition 3.1. Let Γ and ν be as in Theorem A, 0 < λ < λ1(ν). Then for
some constant C depending on ν, λ the following holds: for any probability measure
μ0 on T

d, if μn = ν∗n ∗ μ0 has a nontrivial Fourier coefficient a ∈ Z
d \ {0}

(3.1) |μ̂n(a)| > t, with n > C · log(2‖a‖
t

),
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then

(3.2) μ0(WQ,e−λ·n) >

(
t

2

)C

where Q =

(
2‖a‖
t

)C

.

By specializing to the case of μ0 = δx, we get Theorem A, since

δx(WQ,e−λ·n) > 0 ⇐⇒
∥
∥
∥
∥x− p

q

∥
∥
∥
∥ < e−λn for some q ≤ Q.

Note that somewhat surprisingly Theorem A then implies a sharper form of Propo-
sition 3.1 with the estimate (3.2) on the mass of almost rational points replaced by
the sharper estimate μ0(WQ,e−λ·n) > C ′t. In the special case of μ = μ0 = μ1 = . . . a
ν-stationary probability measure, we can take n in Proposition 3.1 to be arbitrarily
large and deduce that for appropriate constant C

μ(RQ) ≥
(
t

2

)C

for Q =

(
2‖a‖
t

)C

,

with a and t as in (3.1), giving a somewhat more quantitative version of Theorem D.
We sketch the proof of Proposition 3.1. The proof consists of two phases:

(Ph-1) First one starts with a lower bound on a single Fourier coefficient of the
measure μn = ν∗n ∗μ, namely |μ̂n(a)| > t, and deduce from this that for an
appropriately chosen m1 < n the measure μn−m1

has a rich set of Fourier
coefficients which are larger than a fixed power of t/2.

(Ph-2) In the second phase, this information on the set of big Fourier coefficients of
μn1

for n1 = n−m1 is used to show that for another appropriately chosen
m2 < n1 the measure μn1−m2

gives a significant (a fixed power of t/2) mass
to small balls around rational points with low denominator.

It is perhaps instructive to present a proof of a much simpler result with a somewhat
similar structure:

Proposition 3.2 (“Baby Case”). A probability measure μ on T
d which is Γ-

invariant for Γ a finite index subgroup of SLd(Z) is a linear combination of Haar
measure and a purely atomic Γ-invariant measure.

In this setting one can use the following simple argument by Marc Burger [9].

• Assume that the Γ-invariant probability measure μ is not Haar measure.
Then μ has a nontrivial Fourier coefficient:

|μ̂(a)| = t > 0 at some a ∈ Z
d \ {0}.

Since μ̂(a) = ĝ∗μ(a) = μ̂(gtra), it follows that |μ̂(b)| = t0 > 0 for all b ∈
Γtra. For SLd(Z) and its finite index subgroups, any orbit Γtra ⊂ Z

d \ {0}
has positive density in Z

d.
• By Wiener’s Lemma this implies that μ has atoms. Indeed, evaluating μ×
μ(Δ) = μ ∗ μ̌({0}) (where Δ is the diagonal in T

d×T
d and the convolution

μ∗ μ̌ is the image of μ×μ under the projection (x, y) �→ x−y) in two ways,
one gets the identity (cf. [23, I.7.13])

∑

x atom of μ

μ({x})2 = lim
n→∞

1

|Bn|
∑

a∈Bn

|μ̂(a)|2
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where Bn =
{
a ∈ Z

d : max1≤i≤d |ai| ≤ n
}
. It follows that any Γ-invariant

probability measure μ on T
d can be presented as a linear combination of

Haar measure and a purely atomic Γ-invariant measure.

In the context of Proposition 3.1 establishing the existence of enough “big” Fourier
coefficients for μn1

given that μn had at least one significant Fourier coefficient
is substantially more involved, and we get much less than positive density. Con-
sequently, in the second phase of the proof we will start with a weaker type of
information on μ than in the simple proof sketched above.

3.A. Phase I: Large scale structure of the set of large Fourier coefficients.
Starting from some a0 ∈ Z

d \ {0} with |μ̂n(a0)| = t0 > 0 for sufficiently large
n depending on t0, a0, we shall prove that for t = tp0 and any m1 in the range
C(1 + log t0) < m1 < n (with p, C some constants depending on Γ, ν) the set of
t-“large” Fourier coefficients

(3.3) An−m1,t =
{
a ∈ Z

d : |μ̂n−m1
(a)| > t

}

is relatively “thick” in Z
d, in the following sense.

Let N (E;M) denotes the covering number of E ⊂ Z
d by M -balls. In the

simple proof of Proposition 3.2 the proportion of “large” Fourier coefficients in any
sufficiently large box was shown to be positive. In the context of Proposition 3.1
the most difficult part of the proof, which in precise form is given by Theorem 6.1
below, gives that there is a large N (with N

‖a0‖ bounded above and below by an

exponential in m1) and an exponentially smaller M (more precisely, M
‖a0‖ will be in

the range
(

N
‖a0‖

)1−κ1 < M
‖a0‖ <

(
N

‖a0‖
)1−κ2) so that the number of M -balls needed

to cover the intersection An−m1,t ∩ [−N,N ]d is large—namely

(3.4) N
(
An−m1,t

p
0
∩ [−N,N ]d;M

)
> tp0

(
N

M

)d

,

where p, κ1, κ2 > 0 are constants depending only on Γ and ν. Thinking of t0 as
fixed (which is the case needed to establish Corollary B), this gives a lower bound
on the covering number that is a positive proportion of the trivial upper bound.

To prove the key estimate (3.4), one starts with the identity

μ̂n(a0) =
∑

g

ν∗m(g) · μ̂n−m(gtra0)

to conclude that if |μ̂n(a0)| > t0, then

(3.5) ν∗m
{

g ∈ Γ :
∣
∣μ̂n−m(gtra0)

∣
∣ >

t0
2

}

≥ t0
2
.

In Proposition 6.2 below we deduce from (3.5), using the quantitative theory of
random matrix products, that once m1 is larger than some absolute constant,

(3.6) N
(
An1,t1 ∩ [−N1, N1]

d;M1

)
>

(
N1

M1

)α1

,

where1 n1 = n −m1, N1 = ‖a0‖ exp( 32λm), M1 = ‖a0‖, t1 = t0/2, with λ the top
Liapunov exponent corresponding to ν (cf. Section 4).

1There is nothing special about 3
2
; any constant greater than 1 would do.
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For our proof it is crucial to improve the estimate (3.6) to the much sharper
density type estimate (3.4). Equation (3.6) is equivalent to having an M1-separated
subset E ⊂ Z

d∩ [−N1, N1]
d of cardinality |E| ≥ (N1/M1)

α1 so that for every a ∈ E
we have |μ̂n1

(a)| > t1; and decreasing the cardinality of E by a constant factor, we
may assume

(3.7)

∣
∣
∣
∣
∣

∑

a∈E

μ̂n1
(a)

∣
∣
∣
∣
∣
>

t1
2
|E| .

Similar to the way we used the identity μn = ν∗m1 ∗ μn1
in the proof of (3.6),

equation (3.7) implies that (for any choice of m < n1), for ν∗m-many g ∈ Γ, for
many e ∈ gtrE we have that |ν̂n1−m(e)| > t1/4; indeed, if

G =

{

g ∈ Γ :

∣
∣
∣
∣

{

e ∈ gtrE : |μ̂n1−m(e)| > t1
4

}∣
∣
∣
∣ >

t1
4
|E|

}

,

then ν∗m(G) ≥ t1/4.
Our assumptions (Γ-0)–(Γ-2) on Γ guarantee that the top Liapunov exponent

for the random walk on SLd(Z) corresponding to ν is simple, which allows us
to approximate ν∗m-typical g by a composition of dilation (by a factor σ1(g) in
the range e(λ−ε)m ≤ σ1(g) ≤ e(λ+ε)m), a rotation, and a rank one projection,
say πg. The theory of random matrix products also gives us control over the
distribution on the direction of the null space of this projection. Therefore choosing
M2 appropriately, we cannot distinguish with resolution M2 between the map a �→
gtra and this rank one transformation, e.g. in the sense that for any E′ ⊂ E

N
(
gtr(E′);M2

)
� N

(
σ1(g)πg

tr(E′);M2

)
.

As long as m = m2 is sufficiently large (larger than some constant times |log t|),
this applies to most g ∈ G so that we can view gtr(E) as a rotated and dilated rank
one (random) projection of E.

If N2,M2,m2 are appropriately chosen, outside a set of g ∈ Γ of negligible
ν∗m-measure, gtr([−N1, N1]

d) is contained in a rotated rectangular box of size
[−N2, N2] × [−M2,M2] × · · · × [−M2,M2]. If α1 were very close to d (say bigger
than some αhigh), we could use a variant on the Marstrand Projection Theorem, or
more precisely on an extension due to Falconer [13], to show that for many g ∈ G

N
(
gtrE;M2

)
� tp1

(
N2

M2

)

and moreover that a similar inequality (with possibly a different implied constant,
still polynomial in t1) holds for any subset E′ ⊂ E with |E′| ≥ t1|E|/4. By
definition of G, one obtains that

N
(
An2,t1/4 ∩ gtr([−N1, N1]

d);M2

)
� tp1

(
N2

M2

)

and with some further arguments employing the inherent additive structure of
Fourier coefficients of probability measures2 get from this an estimate of the desired
form

N
(
An2,t1/4 ∩ [−N2, N2]

d;M2

)
� tp

′

1

(
N2

M2

)d

where p′ > p is some fixed power.

2Essentially, the Cauchy-Schwartz inequality.
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The argument sketched above is carried out in Section 6.C below, and the re-
sulting proposition is given by Proposition 6.5 below. Unfortunately, we have little
control over α1 which is determined by properties of the random walk correspond-
ing to ν on SL(d,R). To handle the main case where α1 < αhigh, we need to
use arithmetic combinatorics: a projection result [5, Thm. 5] of the first author
(based on techniques developed in the context of the Discretized Ring Conjecture
[4]). Roughly stated, this theorem asserts that given a sufficiently rich set of lines
D ⊂ P

d−1 and a (sufficiently nondegenerate) set E ⊂ [0, 1]d of “dimension” α, there
exist (many) lines θ ∈ D so that the projection πθ(E) of E to θ has “dimension”
> (α + αinc)/d for some fixed αinc > 0. This bootstrap step is the content of
Proposition 6.3.

A complication in the proof of both Proposition 6.3 and Proposition 6.5 is that
to employ the respective (discretized) projection theorem, one needs finer control
on the set to be projected than simply its covering number by Mi-balls. This is
taken care of by zooming in on a portion of the set Ati,ni

∩ [−Ni, Ni]
d in which

there is greater regularity and recentering this window using Cauchy-Schwartz; cf.
Lemma 6.7.

3.B. Phase II: Granulation structure of μ0 on the torus. The information
on the Fourier coefficients of a measure μ0 for which a Fourier coefficient μ̂n(a) is
significant that has been obtained in Phase I of the proof (with μn = ν∗n ∗ μ0 as
before and n sufficiently large depending on ‖a‖ and the size of |μ̂n(a)|) can be
translated to a statement about the measure μ0 itself (and more generally about
the measures μn−m for m large enough) using the following elementary harmonic
analysis proposition in the spirit of Wiener’s Lemma:

Proposition 3.3 (cf. Proposition 7.5). If a probability measure μ on T
d satisfies

(3.4) for some N > M , then there exists a set X ⊂ T
d of 1/M -separated points in

T
d with

μ

(
⋃

x∈X

Bx, 1
N

)

> tp
′

0 .

Using this harmonic analytic fact, the outcome of the first stage of the proof is
that for m1 � log(‖a‖/t0), the measure μn1

= μn−m is granulated in the following
sense (cf. Proposition 7.1): for some constants 1 < L1 < L2 and κ > 0 there is
some ρ ∈ (L−m

2 , L−m
1 ) and the finite set X ⊂ T

d so that

(1) X is r = ρ1−κ-separated,
(2) μn1

(⋃
x∈X Bx,ρ

)
> tC .

This is not yet what we want. So we continue with the strategy of successively
sacrificing some convolution powers of ν (i.e., increasing m to m′ > m) in exchange
for more precise information on μn−m′ .

The two conditions (1)–(2) above on μn−m and X guarantee in particular that
tO(1) of the mass of μn−m is concentrated in balls of radius ρ whose measure is
rather large, namely ≥ tO(1)ρ1−κ.

Thanks to the separation condition, we can improve this estimate (cf. Propo-
sition 7.2) and show that for appropriate m′ (also � log(‖a‖ /t)) there is a set
X ′ of cardinality at most that of X so that μn−m′(

⋃
x∈X′ Bx,ρN ) ≥ tON (1) for an

arbitrary N .
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At this stage we can rectify the unknown balls
{
Bx,ρN : x ∈ X ′} to be centered

at rational points of controlled denominator. The reason for that is that as

μn−m′(Bx,ρN ) =
∑

g

ν∗�(g)μn−m′−�(g
−1Bx,ρN ),

if μn−m′(Bx,ρN ) is big, for many g with
∥
∥g−1

∥
∥ of controllable size (roughly e−λd�,

with λd the bottom Liapunov exponent of ν), the measure of the “shifted” balls
μn−m′−�(g

−1Bx,ρN ) has to be big—so many g in fact that as μn−m′−� is a probabil-
ity measure, there should be a lot of intersections between these shifted balls. These
nontrivial intersections can be used to show that x is much closer to a rational of
controlled denominator than what can be expected of a random point in T

d. This
rough scheme is carried out by Proposition 7.3.

Using the extra information obtained, one can proceed similarly to the first
step mentioned above (i.e., Proposition 7.2) but with essentially no loss of mass
(Proposition 7.4) and obtain the desired conclusion, i.e., Proposition 3.1.

4. Random matrix products

4.A. Notation. Let G be a topological group, in this paper the discrete group Γ or
the torus Td. On the set Prob(G) of all probability measures on G (for G = T

d the
measures are assumed to be Borel regular) one defines operations of convolution:
ν1, ν2 �→ ν1 ∗ ν2, and of a reflection ν �→ ν̌, by pushing forward ν1 × ν2 under
the product map (g1, g2) �→ g1 · g2 and pushing ν by the inverse map g �→ g−1,
respectively. For n ∈ N we write ν∗n for the nth convolution power of ν with itself.
This should be distinguished from the product ν×n defined on Gn.

Similarly, ifG � X is a continuous action on a topological space, for ν ∈ Prob(G)
and μ ∈ Prob(X) the convolution ν∗μ ∈ Prob(X) is the pushforward of ν×μ under
the action map G×X → X. For Γ � T

d and ν ∈ Prob(Γ), μ ∈ Prob(Td) we have

ν ∗ μ =
∑

g∈Γ

ν(g) · g∗μ, where g∗μ(E) = μ(g−1E).

For μ ∈ Prob(Td) the Fourier coefficients are

μ̂(a) =

∫

Td

ea(x) dμ(x) where ea(x) = e2πi〈a,x〉 (a ∈ Z
d, x ∈ T

d).

The Fourier transform intertwines Γ-actions on T
d and on Z

d = T̂
d according to

ĝ∗μ(a) = μ̂(gtra).

In a metric space (such as Zd, Rd, Pd−1, Td) we denote by Bx,r = {y : d(x, y) ≤ r}
the closed r-ball around x and by Nbdr(E) the (closed) r-neighborhood of a set E.

For a set E denote by

N (E; r) = inf

{

n : ∃x1, . . . , xn s.t. E ⊂
n⋃

i=1

Bxi,r

}

the covering number of E by r-balls (these covering numbers will be used for finite
subsets of Zd with a large r and for subsets of Pd−1 and T

d with small r > 0).
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Linear algebra. Throughout the paper we use the standard inner product 〈x, y〉 =
∑d

1 xiyi, the Euclidean norm ‖x‖2 = 〈x, x〉 on R
d, and the operator norm ‖g‖ =

max ‖gx‖/‖x‖ on matrices g ∈ GLd(R). For x ∈ R
d \ {0}, x̄ = Rx denotes the

corresponding point in the projective space P
d−1. We equip P

d−1 with the metric
given by

d� (x̄, ȳ) = sin (angle(x̄, ȳ)) =
‖x ∧ y‖
‖x‖ · ‖y‖ .

For g ∈ GLd(R) denote by σ1(g) ≥ σ2(g) ≥ · · · ≥ σd(g) > 0 the singular values of
g. In the polar decomposition we have

g = U

⎛

⎜
⎝

σ1(g)
. . .

σd(g)

⎞

⎟
⎠ V with U, V orthogonal.

For g ∈ GLd(R) let �(g) = σ2(g)/σ1(g). If �(g) < 1, let

θ(g) = Uē1 ∈ P
d−1.

This is the direction of the long axis of the g image of the round ball
{
x ∈ R

d : ‖x‖ ≤ 1
}
.

Denote by H(g) the hyperplane of vectors with “shorter stretch”

H(g) =
{
z̄ ∈ P

d−1 : V z ∈ Span(e2, . . . , ed)
}

⊂
{
z̄ ∈ P

d−1 : ‖gz‖ ≤ σ2(g)‖z‖
}
.

Note that θ(g) describes the direction of the image of the “long vector”, under
g : Rd → R

d, while H(g) refers to the source of the shorter ones. If �(g) = 1, define
θ(g) and H(g) arbitrarily.

Lemma 4.1. For g ∈ GLd(R) with �(g) < 1:

(1) H(g) = θ(gtr)⊥.
(2) For any 0 
= z ∈ R

d,

‖g‖ · ‖z‖ · d� (z̄, H(g)) ≤ ‖gz‖ ≤ ‖g‖ · ‖z‖ · (ρ(g) + d� (z̄, H(g))).

(3) d� (gz̄, θ(g)) < �(g)/d� (z̄, H(g)) for any 0 
= z ∈ R
d.

(4) If g = hk with �(g) < 1 and 2�(h) < ‖g‖/(‖h‖ · ‖k‖), then

d� (θ(g), θ(h)) < 2�(h) · ‖h‖ · ‖k‖‖g‖ .

Proof. (1) is immediate from the definitions.
(2) Write z = ‖z‖ · (tx + sy) with x̄ ∈ H(g)⊥, ȳ ∈ H(g), ‖x‖ = ‖y‖ = 1. Then

|t| = d� (z̄, H(g)), while

‖z‖ · ‖g‖ · |t| ≤ ‖gz‖ = ‖z‖ ·
√
t2‖gx‖2 + s2‖gy‖2 ≤ ‖z‖ · (|t|‖g‖+ |s|σ2(g)).

(3) Assume ‖z‖ = 1 and write z = tx + sy as in (2). We have θ(g) = gx̄ and
‖g‖ = ‖gx‖ and ‖gz‖ ≥ ‖g‖ · |t|. Also gx ∧ gz = gx ∧ (tgx + sgy) = s(gx ∧ gy).
Hence

d� (gz̄, θ(g)) =
‖gz ∧ gx‖
‖gz‖ · ‖gx‖ ≤ |s| · ‖gy‖ · ‖gx‖

‖g‖ · |t| · ‖gx‖ ≤ ‖gy‖
‖g‖ · |t| .

Now (3) follows, because ‖gy‖ ≤ σ2(g) and |t| = d� (z̄, H(g)).



STATIONARY MEASURES AND EQUIDISTRIBUTION ON THE TORUS 241

(4) Choose a unit vector x ⊥ H(g), denote z = kx, and write

z = ‖z‖ · (ty + sw) with y ∈ H(h)⊥, w ∈ H(h), ‖y‖ = ‖w‖ = 1.

Thus d� (z̄, H(h)) = |t|. We have

‖g‖ = ‖gx‖ = ‖hz‖, ‖z‖ = ‖kx‖ ≤ ‖k‖ =⇒ ‖hz‖
‖z‖ ≥ ‖g‖

‖k‖ .

But ‖hz‖2 ≤ ‖z‖2(t2σ1(h)
2 + σ2(h)

2s2) because w ∈ H(h). Hence

‖g‖
‖h‖ · ‖k‖ ≤ ‖hz‖

‖h‖ · ‖z‖ ≤
√
t2 + �(h)2s2 ≤

√
t2 + �(h)2.

Denoting by c the left-hand side, we get d� (z̄, H(h)) = |t| ≥
√
c2 − �(h)2. Since

θ(g) = gx̄ = hz̄, estimate (3) gives

d� (θ(g), θ(h)) = d� (hz̄, θ(h)) ≤ �(h)
√
c2 − �(h)2

<
2�(h)

c

under the assumption 2�(h) < c. �

4.B. Random walks. Let ν be a probability measure on SLd(R) such that

(4.1)

∫

log ‖g‖ dν < ∞.

The Lyapunov exponents λ1 ≥ λ2 ≥ · · · ≥ λd of ν are defined through the limits of
the following subadditive sequences:

λ1 = lim
n→∞

∫
1

n
log ‖g‖ dν∗n(g),

k∑

i=1

λi = lim
n→∞

∫
1

n
log ‖ ∧k g‖ dν∗n(g).

Equivalently, λi describes the asymptotic of
∫
n−1 · log σi(g) dν

∗n(g), where σi are
the singular values; in particular, σ1(g) = ‖g‖. The convergence holds not only on
average, but also a.e. and in L1: if (g1, g2, . . . ) are chosen independently according
to ν, then, using Kingman’s subadditive ergodic theorem, with probability one and
in L1(ν∞) a long random product has polar decomposition

gn · · · g2g1 = U

⎛

⎜
⎝

eλ1·n+o(n)

eλ2·n+o(n)

. . .

⎞

⎟
⎠V

with U and V orthogonal.

Theorem 4.2 ([17], [16]). Let ν be a probability measure on SLd(R) with (4.1) and
so that the group 〈supp(ν)〉 satisfies conditions (Γ- 0)–(Γ-2) of p. 231. Then the
top Lyapunov exponent is simple:

λ1 > λ2.

In particular, λ1 > 0.

If 〈supp(ν)〉 is irreducible on R
d, then ([15]) for any fixed x ∈ R

d\{0} for ν∞-a.e.
sequence (g1, g2, . . . )

1

n
log ‖gn · · · g1x‖ = λ1.

If, furthermore, λ1 > λ2, then, denoting hn = gn · · · g1, the angle d� (hnx̄, θ(hn)) →
0 a.s.
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We shall need exponential estimates for various rates of convergence in the above
stated limits. Such estimates are known under an assumption slightly stronger than
(4.1), namely:

(4.2)

∫

‖g‖ε dν(g) < ∞ for some ε > 0.

Theorem 4.3 (Large deviations). Let ν ∈ Prob(SLd(R)) satisfy (4.2). Then for
any ω > 0 there are ρ = ρ(ω) > 0 and m0(ω) so that for m ≥ m0(ω)

ν∗m
{

g :

∣
∣
∣
∣λ1 −

1

m
log

‖gx‖
‖x‖

∣
∣
∣
∣ > ω

}

< e−ρ·m ∀x ∈ R
d−1 \ {0} ,

ν∗m
{

g :

∣
∣
∣
∣λi −

1

m
log σi(g)

∣
∣
∣
∣ > ω

}

< e−ρ·m (i = 1, . . . , d).

Proof. The first inequality follows from [3, Thm. V.6.1] and the remarks following
the proof regarding uniformity in x; the second inequality is [3, Thm. V.6.2]. �

Theorem 4.4 (Exponential estimates). Let ν ∈ Prob(SLd(R)) satisfy (4.2) and
conditions (Γ- 0)–(Γ-2) of p. 231. Then for some c1, c2 > 0 and m0 ∈ N so that for
all x̄, ȳ ∈ P

d−1 each of the following subsets of Γ

(1) {g ∈ Γ : d� (gx̄, ȳ) > e−c1·m},
(2)

{
g ∈ Γ : d�

(
gx̄, ȳ⊥

)
> e−c1·m

}
,

(3) {g ∈ Γ : d� (gx̄, θ(g)) < e−c1·m}
has ν∗m-probability > 1− e−c2·m for m ≥ m0.

Proof. Set c1 = (λ1 − λ2)/2.
We first establish (3). Fix x̄ ∈ P

d−1. By Theorem 4.3 there is ρ1 > 0 and m1 so
that for m > m1, with ν∗m-probability > 1− e−ρ1·m

(4.3)

max(

∣
∣
∣
∣λ1 −

1

m
log ‖g‖

∣
∣
∣
∣ ,

∣
∣
∣
∣λ2 −

1

m
log σ2(g)

∣
∣
∣
∣ ,

∣
∣
∣
∣λ1 −

1

m
log

‖gx‖
‖x‖

∣
∣
∣
∣) <

λ1 − λ2

12
.

Let us show that for some m2 (m2 > m1) for all m > m2 these properties imply

(4.4) d� (x̄, H(g)) > e−
λ1−λ2

3 ·m.

Indeed, in the notation of Lemma 4.1, the inequalities in (4.3) imply that

�(g) =
σ2(g)

σ1(g)
< e−

5(λ1−λ2)
6 m.

Hence by (2) of Lemma 4.1, (4.3) yields

d� (x̄, H(g)) ≥ ‖gx‖
‖g‖ · ‖x‖ − �(g)

> e−
2(λ1−λ2)

12 m − e−
5(λ1−λ2)

6 m,

and (4.4) follows for large m. Using Lemma 4.1(3),

d� (gx̄, θ(g)) ≤ �(g)

d� (x̄, H(g))
< e−

5(λ1−λ2)
6 m · e

λ1−λ2
3 m = e−

λ1−λ2
2 m.

This proves (3).
We now turn to the proof of assertion (2). This also relies on Theorem 4.3,

but applied to the random walk corresponding to the measure ν̃ defined by ν̃(g) =
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ν(gtr). The measure ν̃ also satisfies conditions (4.2) and conditions (Γ-0)–(Γ-2)
above and moreover has the same Liapunov exponents as ν. Thus inequalities (4.3)
hold with ν̃∗m-probability exceeding 1− e−ρ2·m for large m. Since θ(g)⊥ = H(gtr),
we have for x̄, ȳ ∈ P

d−1

d�
(
gx̄, y⊥

)
≥ d�

(
θ(g), y⊥

)
− d� (gx̄, θ(g))

= d�
(
ȳ, H(gtr)

)
− d� (gx̄, θ(g)) .

Using (4.4) for ν̃ and part (3) for ν, it follows that for large m

d�
(
gx̄, y⊥

)
> e−

λ1−λ2
3 ·m − e−

λ1−λ2
2 ·m > e−

λ1−λ2
2 ·m

holds with ν∗m-probability > 1− e−ρ2·m − e−ρ1·m. Thus taking c2 = min(ρ1, ρ2)/2
and m0 large enough, we deduce (2). Assertion (1) is a trivial consequence of
(2). �

4.C. Some further estimates. In this subsection we shall establish some basic
estimates that will be used in the following sections.

We shall need a variant of Theorem 4.4 where c1 > 0 may vary.

Lemma 4.5 (Basic estimate of distribution of directions). There exist τ > 0 and
m0 so that for any r in the range

e−m < r < e−m0 ,

for any x̄, ȳ ∈ P
d−1

ν∗m
{
g : d�

(
gx̄, ȳ⊥

)
< r

}
< rτ ,

ν∗m
{
g : d�

(
θ(g), ȳ⊥

)
< r

}
< rτ .

Proof. Let c1, c2 be as in Theorem 4.4. Since c1 can be replaced by any larger value,
we may assume c1 ≥ 2 and pick 0 < τ < c2/c1. Given r > 0, let k = �c−1

1 ·log(1/r)�;
in particular k < m. By choosingm0 large enough, we may ensure that Theorem 4.4
holds for ν∗k. Viewing ν∗m-random element g = gm · · · g1 as a product g = h2 · h1

of a ν∗k-random element h1 followed by a ν∗(m−k)-random element h2, we estimate

ν∗m
{
g : d�

(
gx̄, ȳ⊥

)
< r

}
≤ ν∗m

{
g : d�

(
gx̄, ȳ⊥

)
< e−c1·k}

=

∫

ν∗k
{
h1 : d�

(
h1x̄, h2

tr(y⊥)
)
< e−c1·k} dν∗(m−k)(h2)

<

∫

e−c2·k dν∗(m−k)(h2) = e−c2·k < ec2 · r
c2
c1 < rτ

provided r is small enough.
For the second estimate, fix an auxiliary x̄ ∈ P

d−1, and let k = �c−1
1 · log(1/r)�

as before. We can assume m0+1 < k < m and r+ e−c1·m < 2r < e−c1·(k−1). Since

d�
(
θ(g), ȳ⊥

)
≥ d�

(
gx̄, ȳ⊥

)
− d� (θ(g), gx̄) ,

we have

ν∗m
{
g : d�

(
θ(g), ȳ⊥

)
< r

}
≤ ν∗m

{
g : d� (θ(g), gx̄) > e−c1·m}

+ν∗m
{
g : d�

(
θ(g), ȳ⊥

)
< r + e−c1·m < e−c1·(k−1)

}

< e−c2·m + e−c2·(k−1) ≤ 2e−c2·(k−1) < rτ

assuming r is small enough (guaranteed by taking m0 large). �
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Given a set F = {x̄1, . . . , x̄d} ⊂ P
d−1, a quantitative measure of the extent to

which these lines are in general position is given by the volume spanned by unit
vectors in these directions:

vol(x̄1, . . . , x̄d) =
|x1 ∧ · · · ∧ xd|
‖x1‖ · · · ‖xd‖

.

This quantity is symmetric in the arguments but can be computed as

vol(x̄1, . . . , x̄d) =

d∏

i=2

d� (xi, Span(x1, . . . , xi−1)) .

Hence, denoting

u(x̄1, . . . , x̄d) = min
1≤j≤d

d� (xj , Span(x1, . . . , x̂j , . . . xd)) ,

we have

u(x̄1, . . . , x̄d)
d ≤ vol(x̄1, . . . , x̄d) ≤ u(x̄1, . . . , x̄d).

Lemma 4.6 (General position). For some p < ∞, c0 and s0 > 0 depending on ν,
one has

(ν∗m)×d
{
�g ∈ Γd : vol(θ(g1), . . . , θ(gd)) > sp

}
> 1− s

and

(ν∗m)×d
{
�g ∈ Γd : vol(θ(gtr1 ), . . . , θ(g

tr
d )) > sp

}
> 1− s

for e−cm < s < s0

Proof. Let r = d−1 · s1/τ . Given any arbitrary g1 ∈ Γ, the ν∗m-probability that

d� (θ(h), θ(g1)) > r

is at least 1− rτ (Theorem 4.4). For the same reason, given any g1, g2,

ν∗m {h : d� (θ(h), θ(g1)⊕ θ(g2)) > r} > 1− rτ .

Continuing this argument, we deduce that the set

{
�g ∈ Γd : d� (θ(gi), θ(g1)⊕ · · · ⊕ θ(gi−1)) > r, i = 2, . . . , d

}

has (ν∗m)×d-measure at least

(1− rτ )d−1 > 1− (d− 1)rτ > 1− s.

On the other hand every d-tuple in the set above has

vol(θ(g1), . . . , θ(gd)) > rd.

If p is large enough, sp < rd = d−dsd/τ .
To deduce the second estimate, one may apply the same arguments to the random

walk generated by ν̃, with ν̃ the transpose to ν as in the proof of Theorem 4.4. �
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5. Two notions of coarse dimension

Given a subset Ã of B0,1 ⊂ R
d, there are several ways one can try to estimate its

dimension, or more precisely, in our case, its dimension at scale r. One simple way is
via covering numbers: we can consider Ã to be of “coarse dimension” ≥ α at scale r

if N
(
Ã; r

)
≥ r−α. Another, more restrictive, definition of “coarse dimension ≥ α”

is via the following:

Definition 5.1. A measure ρ on a set B is said to be (C,α)-regular at scale r on
B if for any x ∈ A, s ≥ r

ρ(Bx,s) < C
( s

diamB

)α
.

A set B is said to be (C,α)-regular at scale r if the corresponding uniform measure
ρ = 1

|B|
∑

x∈B δx is (C,α)-regular at scale r.

Thus another plausible definition of “coarse dimension” of a finite set A would
be that A supports some probability measure ρ which is (C,α)-regular at scale r
on A for some absolute constant C.

The following lemma allows us to relate the two notions:

Lemma 5.2. For any ε > 0 there are constants Cε, C
′
ε > 0 such that for every s, α

with 2ε < s < α and r < 1, if Ã ⊂ B0,1 ⊂ R
d satisfies

N
(
Ã; r

)
≥ r−α,

then there is a point x ∈ B0,1 and a probability measure ρ supported on Ã ∩ Bx,rβ

which is (Cε, α− s)-regular on Bx,C′
εr

β at scale r for β = d−α+ε
d−α+s−ε .

Proof. Let T be a large integer (which will eventually be determined by ε), and let
k1 = �− log2(r)/T �. Without loss of generality we shall assume that every cube of

size 2−k1T intersects Ã in at most one point.
Denote S0 =

{
(x1, . . . , xd) ∈ R

d : ∃1 ≤ i ≤ d, xi ∈ Z+ [0, 2−T ]
}
, Sk = 2−k · S,

and

S = S0 ∪ · · · ∪ Sk1
.

The density of each Sk in R
d is less than d2−T , so the density of S is no more than

1− (1− d2−T )k1+1.

Hence there is a translate Ã+ ξ of Ã so that
∣
∣
∣(Ã+ ξ) \ S

∣
∣
∣ ≥ (1− d2−T )k1+1

∣
∣
∣Ã
∣
∣
∣ ≥ C(1)r−α+ε/2

as long as T is large enough (depending only on d, ε) for some constant C(1) (de-
pending on d, T , and ε).

Let Ã0 = (Ã+ ξ) \ S. We shall call a cube of the form

Q =

[
n1

2kT
,
n1 + 1

2kT

)

× · · · ×
[
nd

2kT
,
nd + 1

2kT

)

for (n1, . . . , nd) ∈ Z
d a 2−kT -cube. By definition of Ã0, for any 0 ≤ k ≤ k1 and any

two distinct 2−kT -cubes Q1, Q2 intersecting Ã0, the distance between Q1 ∩ Ã0 and
Q2 ∩ Ã0 is at least 2−(k+1)T (this is precisely the purpose of removing points of S
from an appropriate shift of Ã).
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It will be convenient to start by extracting from Ã0 a large subset Ã1 with tree-
structure (similar to but simpler than that used in [4, 5]). By this we mean that
there are integers R1, . . . , Rk1

with 1 ≤ Rk ≤ 2T so that if Ak denotes the collection

of 2−kT -cubes intersecting Ã1, then for each 0 ≤ k < k1, each 2−kT -cube Q ∈ Ak

contains precisely Rk+1 cubes in Ak+1. By successively trimming the set Ã0, we
will show that if T is large enough (also depending only on ε), one can find such a

subset Ã1 ⊂ Ã0 with tree-structure so that
∣
∣
∣Ã1

∣
∣
∣ ≥ C(2)r−α+ε.

Indeed, to obtain this trimmed set Ã1, start by throwing away all 2−k1T -cubes
not intersecting Ã0. Then consider all 2−(k1−1)T cubes intersecting Ã0, and find
Rk1

so that the number of these cubes containing between Rk1
and 2Rk1

of the

2−k1T -cubes is maximized. Throw away all points of Ã0 which are not contained
in such a 2−(k1−1)T -cube. Suppose Q is one of the remaining 2−(k1−1)T -cubes and
that exactly nQ of the 2dT possible 2−k1T -subcubes inQ have nonempty intersection

with Ã0. We throw away all points of Ã0 in nQ − Rk1
of these 2−k1T -subcubes so

that precisely Rk1
subcubes with nonempty intersection with Ã0 remain in Q. Note

that the number of points of Ã0 that are contained in this collection of remaining

2−(k1−1)T -cubes is at least
∣
∣
∣Ã0

∣
∣
∣ /(2dT ).

Now consider all 2−(k1−2)T -cubes intersecting the surviving set, and choose
Rk1−1 in a similar way, etc. At the end of k1 steps of this type we get a set

Ã1 with tree structure as above and

(5.1)
∣
∣
∣Ã1

∣
∣
∣ ≥ (2dT )−k1

∣
∣
∣Ã0

∣
∣
∣ ≥ C(2)r−α+ε

if T is large enough for a suitably chosen constant C(2) (depending on T but not
on r).

Since each 2−k1T -cube contains at most one point of Ã1, we have that

k1∑

�=1

log2 R� = log2

∣
∣
∣Ã1

∣
∣
∣ ;

hence by (5.1)

(5.2)

k1∑

�=1

log2 R� ≥ −(α− ε)T (k1 − 1).

Set

Mi = min
i<k≤k1

1

k − i

k∑

�=i+1

log2 R�.

Let 1 ≤ k2 < k1 be the smallest integer for which Mk2
> (α− s+ ε)T if such exists;

otherwise set k2 = k1. Then a standard covering argument gives that there is some
k2 ≤ k ≤ k1 so that

(5.3)

k∑

�=1

log2 R� ≤ k(α− s+ ε)T ;

hence using (5.3) for � ≤ k and the bound R� ≤ 2dT for � > k, we get the inequality

k2(α− s+ ε)T + (k1 − k2)dT ≥
k1∑

�=1

log2 R� ≥ (α− ε)T (k1 − 1)
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and

k2 ≤ k1
d− α+ ε

d− α+ s− ε
+O(1)

(explicitly, the O(1) term is (α− ε)/(d− α+ s− ε)).

Now let Q be any 2−k2T -cube intersecting Ã1, and let ρQ be the normalized

counting measure on Ã1 ∩ Q as above. Then as Mk2
≥ (α − s + ε)T for any

2−�T -cube Q′ ⊂ Q for k2 ≤ � ≤ k1

ρQ(Q
′) =

�∏

�′=k2+1

R−1
�′ ≤ 2−(�−k2)(α−s+ε)T

and ρQ is a (Cε, α − s)-regular measure on Q at scale r, for a suitably chosen
constant Cε; note also that Q is a cube of diameter C ′

εr
β for

β =
k2
k1

=
d− α+ ε

d− α+ s− ε
.

�
Lemma 5.3. Let ρ be a (C,α)-regular probability measure at scale r on B ⊂ R

d.
Then for any ε > 0 there is an r-separated subset A ⊂ supp(ρ) so that the uniform
measure on A (i.e., μA = 1

|A|
∑

a∈A δa) is (Cε, α− ε)-regular at scale r on B.

Proof. For simplicity of notation, we may assume without loss of generality that
diamB = 1. We may also assume that r = 10−K and that ρ(Q) < 10−αk for every
10−k-cube Q of the form

(5.4) Q =

[
n1

10k
,
n1 + 1

10k

)

× · · · ×
[
nd

10k
,
nd + 1

10k

)

, n1, . . . , nd ∈ Z,

where k ∈ {k0, . . . ,K}. Let L = �10αK�, and let {a1, . . . , aL} be chosen randomly
and independently with distribution ρ.

Fix an integer k ≤ K and denote p = 10−(α−ε/2)k, N = 10Lp. The probability
that a given 10−k-cube Q contains n > N points from {a1, . . . , aL} is given by the
tail of the binomial distribution:

∑

n>N

(
L

n

)

pn(1− p)L−n <
∑

n>N

L(L− 1) · · · (L− n+ 1)

n!
· pn

<
∑

n>N

(
Lp

n/3

)n

<
∑

n>N

(
3

10

)n

< 10−
1
2N .

Since N/2 = 5Lp > 10αK · 10−(α−ε)k = 10α(K−k)+εk/2 ≥ 10εk/2 > 2dk for k > kε,
it follows that the probability that one or more of the 10dk cubes Q of size 10−k

has more than L · 10−(α−ε)k > N points is less than

10dk · 10− 1
2N < 10dk · 10−2dk = 10−dk.

Hence with probability exceeding 1 −
∑∞

k=1 10
−dk > 0, the set A0 = {a1, . . . , aL}

has the property that for each k ∈ {kε, . . . ,K} and every 10−k-cube Q

|A ∩Q|
|A| < 10−(α−ε)k.

Even though each 10−K-cube as above (cf. (5.4)) contains at most one point of
A0, the set A0 may not quite be 10−K-separated since points in adjacent cubes can
be arbitrarily close; but since each 10−K-cube is adjacent to at most 3d − 1 other
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10−K-cubes, there is a 10−K-separated subset A ⊂ A0 with |A| ≥ |A0| /(3d − 1).
This set A satisfies the conditions of the lemma. �

Closely related to the notion of (C,α)-regular measures introduced in Defini-
tion 5.1 is the notion of α-energy of a measure ρ, denoted by Eα(ρ), which we
define for a compactly supported measure ρ on R

d and α < d by

Eα(ρ) =
∫

Rd

∫

Rd

dρ(x) dρ(y)

|x− y|α .

If ρ is (C,α+ ε)-regular on a set B at all scales, then

Eα(ρ) = α

∫∫
μ(Bx,r)

rα+1
dμ(x) dr ≤ C(diamB)−α−εαε−1.

The energy Eα(ρ) can also be given in terms of the Fourier transform of ρ, up to
an implicit constant that tends to ∞ as α → d (cf. [26, 12.12]):

(5.5) Eα(ρ) �
∫

Rd

|ρ̂(ξ)|2 (1 + |ξ|)α−d dξ.

If Eα(ρ) < ∞, then any set of positive ρ measure has Hausdorff dimension ≥ α (for
this and further information about α-energy, see [26]).

A simple way to adapt this notion to our “coarse” setup, where we do not care
about the details of how ρ behaves at scales smaller than r, is to smoothen it
by convolving with an appropriate kernel. Let Φ be a fixed radially symmetric
nonnegative smooth function on R

d with ‖Φ‖1 = 1 supported on B0,1, and set for
r > 0

Φr(x) = r−dΦ(r−1x).

Then instead of using the possibly atomic measure ρ, we can consider its smoothed
version ρ′ = ρ ∗ Φr. In particular, if ρ is (C,α + ε)-regular at scale r on a subset
B ⊂ R

d, then

Eα(ρ ∗ Φr) � C(diamB)−α−εαε−1

with the implicit parameter depending only on d and the choice of Φ.

6. Structure of the set of t-large Fourier coefficients

Fix some probability measure μ0 ∈ Prob(Td) and consider the sequence

μn = ν∗n ∗ μ0

and the following sets of “large” coefficients

At,n =
{
b ∈ Z

d : |μ̂n(b)| > t
}
.

Our goal in this section is to obtain the following result:

Theorem 6.1. There exist constants κ1 > κ2 > 0, L2 > L1 > 1, p, C < ∞
depending on ν only, so that if for some t0 ∈ (0, 1/2)

(6.1) |μ̂n0
(a0)| ≥ t0,

then for n0 > m > C log(2‖a0‖/t0) one has

N
(
Atp0 ,n0−m ∩ B0,N ;M

)
> tp0 ·

(
N

M

)d
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for some N in the range Lm
1 < N

‖a0‖ < Lm
2 and M in the range

(
N

‖a0‖

)1−κ1

<
M

‖a0‖
<

(
N

‖a0‖

)1−κ2

.

The proof of Theorem 6.1 involves the following steps.

Proposition 6.2 (Initial dimension). There exist αini, C1 > 0 depending only on
ν so that for any measure μ0 on T

d, if μn = ν∗n ∗ μ0 satisfies

|μ̂n0
(a0)| > t0

for n = n0, t0 ∈ (0, 1/2), then for any integer m with

n0 > m ≥ C1 log
1

t0

it holds that

(6.2) N
(
At0/2,n0−m ∩ B0,N ;M

)
≥
(
N

M

)αini

for N = exp(3λ1m/2) ‖a0‖, M = ‖a0‖.

Proposition 6.3 (Improving the large scale dimension). Given αini > 0 and
αhigh < d, there exist αinc, c2, C > 0 (depending on ν) so that if for some t ∈
(0, 1/2), 1 ≤ M < N with

(6.3) log
N

M
> c2 log

2

t
and n ≥ c2 log

N

M

it holds that

N (At,n ∩ B0,N ;M) >

(
N

M

)α

for some αini ≤ α ≤ αhigh,

then there are m,M ′, N ′ with M ′ ≥ M ,

m ≤ c2 log
N

M
, N ′ ≤ N

(
N

M

)c2

,
N ′

M ′ ≥
(
N

M

)1/c2

,

so that

(6.4) N (At′,n−m ∩ B0,N ′ ;M ′) >

(
N ′

M ′

)α+αinc

for t′ = Ct4d.

Iterating this proposition we obtain:

Corollary 6.4 (of Proposition 6.3). Given αini > 0 and αhigh < d, there exist
c3, C3 > 0 so that if for some t ∈ (0, 1/2), 1 ≤ M < N with log(N/M) > c3 log(1/t),
and n ≥ c3 log(N/M) it holds that

(6.5) N (At,n ∩ B0,N ;M) >

(
N

M

)αini

,

then there are m,M ′, N ′ with M ′ ≥ M ,

m ≤ c3 log
N

M
, N ′ ≤ N

(
N

M

)c3

,
N ′

M ′ ≥
(
N

M

)1/c3

,
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so that

(6.6) N (At′,n−m ∩ B0,N ′ ;M ′) >

(
N ′

M ′

)αhigh

for t′ = tC3 .

Proposition 6.5 (High dimension to positive density at large scales). There exist
αhigh, c4, κ4 > 0 depending only on ν and q4 depending on d with the following
properties. Assume that for some t ∈ (0, 1/2), 1 ≤ M < N with log(N/M) >
c4 log(1/t), and n ≥ c4 log(N/M) it holds that

N (At,n ∩ B0,N ;M) >

(
N

M

)αhigh

.

Then there are m,M ′, N ′ with M ′ ≥ M ,

m ≤ c4 log
N

M
, N ′ ≤ N

(
N

M

)c4

,
N ′

M ′ ≥
(
N

M

)1/c4

,

such that

N (At1,n−m ∩ B0,N ′ ;M ′) > c−1
4 tκ4

1

(
N ′

M ′

)d

for t1 = c−1
4 tq4 .

Let us deduce Theorem 6.1 from the above propositions.

Proof. Suppose |μ̂n0
(a0)| ≥ t0. Then by Proposition 6.2 there are αini, c1 so that

N
(
At0/2,n0−m1

∩ B0,N1
;M1

)
≥ (N1/M1)

αini

for N1 = exp(3λ1m1/2) ‖a0‖, M1 = ‖a0‖ provided n0 ≥ m1 ≥ C1(1 + |log t0|).
Let αhigh < d be as in Proposition 6.5, and let c3, C3 be as in Corollary 6.4, for

the already chosen values of αini, αhigh. Then if

log
N1

M1
=

3m1λ1

2
> c3(1 + log

2

t0
),(6.7)

n0 −m1 > c3 log
N1

M1
,(6.8)

there are m2 ≤ c3 log
N1

M1
and N2,M2 with

N2 < N1

(
N1

M1

)c3

,
N2

M2
≥
(
N1

M1

)1/c3

so that

N (At2,n0−m1−m2
∩ B0,N2

;M2) >

(
N2

M2

)αhigh

with t2 = (t0/2)
C3 .

As long as

(6.9) log
N2

M2
> c4 log

2

t2

and

(6.10) n0 −m1 −m2 ≥ c4 log
N2

M2
,
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we can apply Proposition 6.5 and conclude that for some N3,M3 with

m3 ≤ c4 log
N2

M2
, N3 ≤ N2

(
N2

M2

)c4

,
N3

M3
≥
(
N2

M2

)1/c4

we have that

N (At3,n0−m1−m2−m3
∩ B0,N3

;M3) > c−1
4 tκ4

3

(
N3

M3

)d

with t3 = (t2)
q4 , proving the theorem.

�

6.A. Initial dimension and regularity: Proof of Proposition 6.2.

Proof of Proposition 6.2. Let ω = λ1/4, and let C1 > 2 be a large constant to be
determined later. For any fixed m > C1(1 + |log(t0)|) set

N = e(λ1+2ω)m ‖a0‖ , R = e(λ1−2ω)m ‖a0‖ .

Let t′ = t0
2 and n′ = n0 −m. Consider the following sets:

Glen =
{
g ∈ Γ : e(λ1−ω)·m < ‖g‖ = ‖gtr‖ < e(λ1+ω)·m

}
,

Gstat =
{
g ∈ Γ :

∣
∣μ̂n′(gtra0)

∣
∣ ≥ t′

}
,

Gang =

{

g ∈ Γ : d� (ā0, H(g)) > min

(

e−m0 ,

(
t0
8

)1/τ
)}

,

G = Glen ∩ Gstat ∩ Gang,

where τ and m0 are as in Lemma 4.5, and we recall that

d� (ā0, H(g)) = d�
(
θ(g), a⊥0

)
.

By Theorem 4.3 there is ρω > 0 so that (assuming m > mω)

ν∗m(Glen) > 1− e−ρω·m.

Our choice of C1 should guarantee m > mω, e
−ρω·m < t0

8 , m > m0, and e−τm < t0
8 .

There exists m1 so that for m > m1 Lemma 4.5 gives

ν∗m(Gang) > 1− t0
8
.

Finally, the fact that μn0
= ν∗m ∗ μn′ gives

ν∗m(Gstat) >
t0
2
.

Therefore

ν∗m(G) > t0
2
− t0

8
− t0

8
=

t0
4
.

Since ‖gtr‖ = ‖g‖ and d� (x̄, H(gtr)) = d�
(
θ(g), x̄⊥), by Lemma 4.1(2) every

g ∈ G ⊂ Gang ∩ Glen has

‖gtra0‖ ≥ ‖gtr‖ · ‖a0‖ · d�
(
ā, H(gtr)

)
> e(λ1−ω)m‖a0‖ ·

(
t0
8

)1/τ

.
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If m > (ω · τ )−1 · log(8/t0), which is true for large C1, then the right-hand side
above is bigger than R. It is also clear that ‖gtra0‖ < N if g ∈ Glen. For g ∈ Gstat

it also holds that gtra0 ∈ At′,n′ . Therefore for g ∈ G ⊂ Glen ∩ Gstat,

gtra0 ∈ A := At′,n′ ∩ (B0,N \ B0,R) = {R < ‖b‖ ≤ N : |μ̂n′(b)| > t′} .

Let D be the projection of A to P
d−1. Then

ν∗m
{
g : gtrā0 ∈ D

}
≥ t0

4

and

N
(
D; e−(λ1−2ω)m

)
≤ N (A; ‖a0‖) .

It follows that

ν∗m
{
g : gtrā0 ∈ D

}
≤ N

(
D; e−(λ1−2ω)m

)

· max
ȳ∈Pd−1

ν∗m
{
g : d�

(
gtrā0, ȳ

)
< e−(λ1−2ω)m

}

≤ N
(
D; e−(λ1−2ω)m

)
e−τ ′m

for some τ ′ > 0 depending only on ν. It follows that

N (A; ‖a0‖) ≥
t0
4
eτ

′m ≥ eτ
′m/2

if C1 is large enough. �

6.B. Bootstrap of large scale dimension: Proof of Proposition 6.3. A
central step in the proof of Theorem 6.1 is the bootstrap procedure, which allows
us to increase the large-scale “dimension” of the set of large Fourier coefficients
from α to α + αinc. In order to show this, we employ the following projection
theorem due to the first author which implicitly can be found in [4] and is proved
explicitly in [5].

Theorem 6.6 ([5, Thm. 5]). For any α0, κ > 0 and d ≥ 2 there are αΔ, ε0, r0,
τ0 > 0 such that the following holds for 0 < r < r0 and α0 < α < d− α0: Let η be
a probability measure on P

d−1 s.t.

(6.11) max
ȳ

η(V (y⊥, ρ)) < ρκ if r < ρ < rτ0 .

Let E ⊂ [0, 1]d be an r-separated set with |E| > r−α and a nonconcentration prop-
erty

max
x

|E ∩ Bx,ρ| < ρκ|E| if r < ρ < rτ0 .

Then there exist D ⊂ P
d−1 and E′ ⊂ E with

η(D) > 1− rε0 , |E′| > rε0 |E|

so that

N (πθ(E
′′); r) > r−(α+αΔ)/d

whenever θ ∈ D and E′′ ⊂ E′ satisfies |E′′| > r2ε0 |E|.
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Lemma 6.7. For any ε > 0, there is a Cε > 0 so that the following holds. Let μ
be a probability measure on T

d and let

At(μ) =
{
b ∈ Z

d : |μ̂(b)| > t
}
.

Assume that for some N > M,α

N (At(μ) ∩ B0,N ;M) ≥
(
N

M

)α

.

Then there is an M < N ′ < N with

log
N ′

M
>

(
d− α+ ε

d− α+ 8ε

)

log
N

M

so that At2/4(μ)∩B0,N ′ contains a subset which is (Cεt
−2, α− 10ε)-regular at scale

M .

Proof. By Lemma 5.2, there is a point x ∈ B0,N so that A ∩ Bx,N ′ supports a
probability measure ρ which is (Cε, α− 9ε)-regular measure at scale M with

N ′

M
=

(
N

M

) d−α+ε
d−α+8ε

.

Replacing Cε by 4Cε, we may assume all b ∈ supp(ρ) satisfy that μ̂(b) lie in a single
quadrant of C, and hence ∣

∣
∣
∣
∣

∑

b

ρ(b)μ̂(b)

∣
∣
∣
∣
∣
≥ t√

2
.

By Cauchy-Schwartz,

∑

b,b1

μ̂(b− b1)ρ(b)ρ(b1) =

∫

Td

∣
∣
∣
∣
∣

∑

b

e(b · x)ρ(b)
∣
∣
∣
∣
∣

2

dx

≥
∣
∣
∣
∣
∣

∫

Td

∑

b

e(b · x)ρ(b) dx
∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣

∑

b

μ̂(b)ρ(b)

∣
∣
∣
∣
∣

2

≥ t2

2
;

hence

(6.12) ρ ∗ ρ̌(At2/4(μ)) ≥
t2

4
.

Let ρ2 be the probability measure3 ρ ∗ ρ̌|At2/4(μ)
. As ρ was (4Cε, α− 9ε)-regular on

Bx,N ′ , the measure ρ ∗ ρ̌ is (2d+2Cε, α− 9ε)-regular on B0,2N ′ ; hence by (6.12)

ρ2 is (2d+4Cεt
−2, α− 9ε)-regular on B(0, 2N ′) .

By Lemma 5.3, there is some

Ã ⊂ supp(ρ2) ⊂ At2/4(μ) ∩ B0,N ′

which is M -separated and (C ′
εt

−2, α− 10ε)-regular on B0,N ′ . �

3Our convention is that for any measure ρ and set E, ρ|E(A) = ρ(A ∩ E)/ρ(E).
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Lemma 6.8. Given αini > 0 and αhigh < d, there exist αinc, c6, C > 0 (depending
on ν) so that if for some t ∈ (0, 1/2), 1 ≤ M < N with

(6.13) log
N

M
> c6 log

1

t
and n ≥ c6 log

N

M

it holds that

N (At,n ∩ B0,N ;M) >

(
N

M

)α

for some αini ≤ α ≤ αhigh,

then there are m,M ′, N ′ with M ′ ≥ M ,

m ≤ c6 log
N

M
, N ′ ≤ N

(
N

M

)c6

,
N ′

M ′ ≥
(
N

M

)1/c6

and ξ ∈ P
d−1 so that if R denotes the “rectangle” B0,N ′ ∩ NbdM ′(ξ),

(6.14) N (At′,n−m ∩R;M ′) >

(
N ′

M ′

)(α+2αinc)/d

for t′ = Ct4.

Proof. Let αΔ, ε0 be as in Theorem 6.6 for α0 = κ = min(αini, d− αhigh)/2. Since
the statement of Theorem 6.6 becomes weaker if either αΔ or ε0 is decreased, we
may as well assume ε0 = αΔ/10 for simplicity.

By Lemma 6.7 applied with ε = αΔ/20, there is an M < N1 < N with

log(N1/M) > c log(N/M)

and an M -separated subset

A ⊂ At2/4,n ∩ B0,N1

which is (Ct−2, α− αΔ/2)-regular at scale M on B0,N1
; in particular

|A| > C−1t2
(
N1

M

)α−αΔ/2

.

Both the constants c and C depend only on αini and αhigh (and αΔ which is deter-
mined by these two quantities).

Let ω > 0 be small (specifically, we require that ω < min(λ1 − λ2, λ1, αΔ)/20)
and let m be the smallest integer so that

e(λ1−λ2−2ω)·m >
N1

M
.

Let n′ = n−m and set M ′, N ′ by

(m1) N ′ = e(λ1+ω)·m ·N1,
(m2) M ′ = e(λ1−ω)·m ·M ;

then also

(m3) e(λ2+ω)·m ·N1 ≤ M ′.

Assuming the constant c6 in (6.13) is sufficiently large, we will have thatm is greater
than or equal to the constant m0(ω) in Theorem 4.3. Invoking that theorem, we
conclude that the set

Glen =

{

g ∈ Γ : |λi −
1

m
log σi(g)| < ω for i = 1, 2

}
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satisfies

(6.15) ν∗m(Glen) > 1− e−ρω·m.

Conditions (m1)–(m3) imply that for any g ∈ Glen

gtr(B0,N1
) ⊂ B0,N ′ ∩ NbdM ′(ξ) with ξ = θ(gtr),

i.e., the linear transformation gtr maps the ball B0,N1
into a cylinder of length 2N ′

and base of radius M ′.
Let η ∈ Prob(Pd−1) denote the distribution of θ(g) where g ∈ Γ is distributed

according to ν∗m, i.e., η(Θ) = ν∗m {g ∈ Γ : θ(g) ∈ Θ}. Lemma 4.5 provides the
regularity of η as in condition (6.11) of Theorem 6.6.

Let E = N−1
1 ·A ⊂ B0,1 ⊂ R

d and r = M/N1. Theorem 6.6 gives us a set E′ ⊂ E

with |E′| > rαΔ/10 |E| and Θ ⊂ P
d−1 with η(Θ) > 1− rαΔ/10 so that

(6.16)

N (πθ(E
′′); r) ≥ r−(α+ 1

2αΔ)/d ∀E′′ ⊂ E′, θ ∈ Θ with |E′′| > rαΔ/10 |E′| .

Let B = N1E
′ and

Gproj = {g ∈ Γ : θ(g) ∈ Θ} .
We have

(6.17) ν∗m(Gproj) = η(Θ) > 1− rαΔ/10.

Since b ∈ B ⊂ A ⊂ At2/4,n, we have that |μ̂n(b)| > 1
4 t

2 for all b ∈ B; by reducing

B slightly, we may also assume that |B|−1 ∣∣∑
b∈B μ̂n(b)

∣
∣ ≥ 1

8 t
2. Using the identity

μn = ν∗m ∗ μn′ (recall that n′ = n − m) and the Cauchy-Schwartz inequality, we
may conclude that

∑

g∈Γ

ν∗m(g) · 1

|B|
∑

b∈B

|μ̂n′(gtrb)|2 ≥

∣
∣
∣
∣
∣
∣

1

|B|
∑

g∈Γ

∑

b∈B

ν∗m(g)μ̂n′(gtrb)

∣
∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣

1

|B|
∑

b∈B

μ̂n(b)

∣
∣
∣
∣
∣

2

> 2−6t4

and therefore the set

Gstat =

{

g ∈ Γ :
1

|B|
∑

b∈B

|μ̂n′(gtrb)|2 > 2−7t4

}

has

(6.18) ν∗m(Gstat) > 2−7t4.

Note that for each g ∈ Gstat the set

(6.19) Bg =
{
b ∈ B : |μ̂n′(gtrb)|2 > 2−8t4

}

has |Bg| > 2−8t4 · |B|. Let G = Glen ∩ Gproj ∩ Gstat. From (6.18), (6.17), and (6.15)
we have

ν∗m(G) > 2−7t4 − rαΔ/10 − e−ρω·m > 2−8t4, where r =
M

N1
,

assuming rαΔ/10, e−ρω·m < 2−9t4 which is guaranteed by taking c6 large enough.
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Moreover, for any g ∈ G we have that |Bg| > 2−8t4 · |B| and (assuming as we

may that 2−8t4 > rαΔ/10) by (6.16)

N (πξ(Bg);M) ≥ r−(α+ 1
2αΔ)/d with ξ = θ(gtr);

note that by definition of Bg,

(6.20) gtr(Bg) ⊂ A t2

16 ,n
′ .

Since also g ∈ Glen, g
tr(Bg) ⊂ B0,N ′ ∩ NbdM ′(ξ) and

N
(
gtr(Bg);M

′) ≥ N (πξ(Bg);M) ,

which in view of (6.20) implies (6.14). �

Lemma 6.9. Let t1 ∈ (0, 1/2), M1 < N1, and n1 satisfy

(6.21) n1, log(N/M) > c7 log(1/t1)

with c7 depending on ν. Let ξ ∈ P
d−1 and let R be the “rectangle” R = B0,N1

∩
NbdM1

(ξ). Then there are m2,M2, N2 with

m2, |log(N1)− log(N2)| , |log(M1)− log(M2)| ≤ c7 log(1/t1)

so that for t2 = (t1/8)
2d

(6.22) N (At2,n1−m2
∩ B0,N2

;M2) ≥ c−1
7 tκ7

1 N (At1,n1
∩R;M1)

d

where κ7 also depends only on ν.

Proof. Let ω = (λ1 − λ2)/10, and let m2 be such that the sets

Glen =

{

�g ∈ Γd : |λi −
1

m2
log σi(gj)| < ω for i = 1, 2 and j = 1, . . . , d

}

,

Gang =
{
�g ∈ Γd : d�

(
ξ,H(gtrj )

)
≥ 2e−ωm2 for j = 1, . . . , d

}
,

Gvol =

{

�g ∈ Γd : vol(θ(gtr1 ), . . . , θ(g
tr
d )) >

(
t1
8

)2dp
}

(p as in Lemma 4.6)

satisfy

(6.23) min((ν∗m2)d(Glen), (ν
∗m2)d(Gang), (ν

∗m2)d(Gvol)) ≥ 1− 1
6 (t1/4)

2d.

By Lemma 4.6, Theorem 4.3, and Theorem 4.4 one can find such m2 with m2 <
τ1 |log t1| for some constant τ1. In particular if the constant c7 of (6.21) is sufficiently
large, n2 = n1 −m2 > 0, which we shall assume henceforth.

Let E ⊂ At1,n1
∩R be an M1-separated set such that the following hold:

(E1) For every distinct b, b′ ∈ E

d�

(

ξ,
b− b′

|b− b′|

)

≤ e−ωm2 .

(E2)
∣
∣∑

b∈E μ̂n1
(b)
∣
∣ ≥ 1

2 t1 |E|.
Clearly one can find such an E so that

|E| ≥ ce−dωm2N (At1,n1
∩R;M1)

where c is some constant depending only on d. Note that in order to satisfy (E2)
one can, e.g., take E so that {μ̂n1

(b) : b ∈ E} lie in a single quadrant of C.
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Write G(x) = |E|−1∑
g ν

∗m2(g)
∑

b∈E egtrb(x). Then

2−2dt2d1 ≤
∣
∣
∣
∣
∣

1

|E|
∑

b∈E

μ̂n1
(b)

∣
∣
∣
∣
∣

2d

=

∣
∣
∣
∣
∣

1

|E|
∑

g

∑

b∈E

ν∗m2(g)μ̂n2
(gtrb)

∣
∣
∣
∣
∣

2d

=

∣
∣
∣
∣

∫

G(x) dμn2
(x)

∣
∣
∣
∣

2d

≤
∫

|G(x)|2d dμn2
(x)

=
1

|E|2d
∑

· · ·
∑

g1,...,g2d

ν∗m2(g1) . . . ν
∗m2(g2d)·

·
∑

· · ·
∑

b1,...,b2d∈E

μ̂n2
(gtr1 b1 + · · ·+ gtrd bd

− gtrd+1bd+1 − · · · − gtr2db2d).

(6.24)

Set Σ(g1,...,gd)(
�b) =

∑d
i=1 g

tr
i bi. Fix (gd+1, . . . , g2d) ∈ Glen and bd+1, . . . , b2d ∈ E

with
(6.25)

|E|−d

∣
∣
∣
∣
∣
∣

∑
· · ·
∑

g1,...,gd

ν∗m2(g1) . . . ν
∗m2(gd)

∑

�b∈Ed

μ̂n2
(Σ(g1,...,gd)(

�b)− b)

∣
∣
∣
∣
∣
∣
≥
(
t1
4

)2d

where b = gtrd+1bd+1 + · · · + gtr2db2d. Such a choice exists in view of the estimate
(6.23) on the measure of Glen and (6.24).

Set

Gstat =

⎧
⎨

⎩
�g ∈ Γd : |E|−d

∣
∣
∣
∣
∣
∣

∑

�b∈Ed

μ̂n2
(Σ�g(�b)− b)

∣
∣
∣
∣
∣
∣
>

1

2

(
t1
4

)2d
⎫
⎬

⎭
.

In view of (6.25), (ν∗m2)d(Gstat) ≥ 1
2 (t1/4)

2d; hence by (6.23) the set G = Gstat ∩
Gvol ∩ Glen ∩ Gang is nonempty. Let t2 = (t1/8)

2d.
We claim that if

tp2e
(λ1−2ω)m2 > 4de(λ2+ω)m2 ,

then for any �g ∈ G,
(6.26) N

(
At2,n2

∩ (Σ�g(E
d)− b);M2

)
≥ t2 |E|d

with M2 = 1
4 t

p
2e

(λ1−2ω)m2M1; note that �g, (gd+1, . . . , g2d) ∈ Glen and E ⊂ B0,N1

imply
Σ�g(E

d)− b ⊂ B0,N2
where N2 = 2de(λ1+ω)m2N1.

As

(6.27) |E| ≥ ce−dωm2N (At1,n1
∩R;M1) ,

it follows from (6.26) and (6.27) that

N (At2,n2
∩ B0,N2

;M2) ≥ c′t2e
−d2ωm2N (At′,n1

∩R;M1)
d
,

establishing Lemma 6.9 assuming the claim (6.26).
We now turn to proving (6.26). Let ξi = θ(gtri ) for i = 1, . . . , d. We shall use the

following auxiliary expression, which is meant to approximate Σ�g(�b):

Σ∗
�g(
�b) =

d∑

i=1

πξi(g
tr
i bi),
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where we consider πξi as a rank one map R
d → R

d whose image is in the vector
space spanned by ξi. Indeed, for �g ∈ Glen

∥
∥
∥Σ�g(�b)− Σ∗

�g(
�b)
∥
∥
∥ ≤ e(λ2+ω)m2

∑

i

‖bi‖ .

Let �b(i) = (b
(i)
1 , . . . , b

(i)
d ) (i = 1, 2) be two distinct points in Ed; assume they

differ in the jth coordinate b
(i)
j . Write bj = b

(1)
j − b

(2)
j as b′j + b′′j with b′′j ∈ H(gtrj )

and b′j ⊥ b′′j . As E is M1-separated, ‖bj‖ ≥ M1. Then d� (ξ, bj/ ‖bj‖) < e−ωm2 (cf.
(E1)); hence as �g ∈ Gang

d�

(
bj
‖bj‖

, H(gj)

)

≥ d�
(
ξ,H(gtrj )

)
− d�

(
bj
‖bj‖

, ξ

)

≥ e−ωm2

and ∣
∣b′j
∣
∣ ≥ e−ωm2 |bj | ≥ e−ωm2M1.

In this notation, πξj (g
tr
j bj) = gtrj b

′
j , and it follows that

∥
∥πξj (g

tr
j bj)

∥
∥ ≥ e(λ1−2ω)m2 ‖bj‖ .

Then as �g ∈ Gvol
∥
∥
∥Σ∗

�g(
�b(1) −�b(2))

∥
∥
∥ ≥ vol(Σ∗

�g(
�b(1) −�b(2)), ξ1, . . . , ξj−1, ξj+1, . . . , ξd)

=
∥
∥πξj (g

tr
j bj)

∥
∥ vol(ξ1, . . . , ξd)

≥ 1
2 t

p
2e

(λ1−2ω)m2 ‖bj‖ .
Hence

∥
∥
∥Σ�g(�b

(1) −�b(2))
∥
∥
∥ ≥ 1

2 t
p
2e

(λ1−2ω)m2 ‖bj‖ − de(λ2+ω)m2 ‖bj‖

under the assumption that this last expression is

≥ 1
4 t

p
2e

(λ1−2ω)m2 ‖bj‖ ≥ M2

from which it follows that Σ�g(E
d) is M2-separated and (6.26) is proved, concluding

the proof of Lemma 6.9. �

Proof of Proposition 6.3. Apply Lemma 6.8 to find N1,M1,m1, n1 = n−m1 with

m1 ≤ c6 log(N/M), N1 ≤ N(N/M)c6 , (N1/M1) ≥ (N/M)1/c6

and a ξ ∈ P
d−1 so that

(6.28) N (At1,n1
∩R;M1) >

(
N1

M1

)(α+2αinc)/d

(t1 = Ct4)

withR = B0,N1
∩NbdM1

(ξ). Now apply Lemma 6.9 to findm2, n2 = n1−m2,M2, N2

with

m2, |log(N1)− log(N2)| , |log(M1)− log(M2)| ≤ c7 log(1/t1)

so that

N (At2,n2
∩ B0,N2

;M2) ≥ c7t
κ7
1 N (At1,n1

∩R;M1)

> c7t
κ7
1

(
N1

M1

)α+2αinc
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with t2 = (t1/8)
2d. Note that by choosing c2 of (6.3) to be large enough guarantees

that (6.21) holds. Moreover, if this constant c2 is large enough,

c7t
κ7
1

(
N1

M1

)α+2αinc

>

(
N2

M2

)α+αinc

,

establishing Proposition 6.3. �

6.C. From high dimension to positive density: Proof of Proposition 6.5.
Underlying (and motivating) the proof of Proposition 6.5 is the following theorem
of Falconer [13] regarding projection of sets. Falconer shows that if η is a measure
on the set of directions with dimension β > 0, then if the dimension of ρ is larger
than d − β, one has that for η almost every direction θ the projection ρθ of ρ
in the direction θ is absolutely continuous with respect to Lebesgue measure; we
follow the treatment of this result by Peres and Schlag in [28, Sec. 6]. In fact, the
argument gives a much more quantitative result connecting the α-energy of ρ to
the projections of ρ.

We need a version of this theorem for measures ρ which are (C,α)-regular at
some scale r but are possibly singular at finer scales (indeed the measure we shall
consider will be purely atomic). As we have already remarked in Section 5, this
can be achieved by applying Falconer’s theorem to ρ convolved with an appropriate
smoothing function.

Let Φ be a fixed radially symmetric nonnegative smooth function on R
d with

‖Φ‖1 = 1 supported on B0,1, and set for r > 0

(6.29) Φr(x) = r−dΦ(r−1x).

Let Ψ : R → R
+ be the smooth compactly supported function

Ψ(x1) =

∫

dx2 . . .

∫

dxd Φ(x1, x2, . . . , xd),

and define Ψr analogously to (6.29).

Lemma 6.10. Let ρ be a probability measure on R, and let φ be the Radon-Nykodym

derivative φ = d(ρ∗Ψr)
dx . Then for every r < r1 < 1

(6.30) N (supp ρ; r1) ≥ (4r1 ‖φ‖22)−1.

Moreover, for any subset X ⊂ supp ρ,

(6.31) N (X; r1) ≥
ρ(X)2

4r1 ‖φ‖22
.

Proof. Let B = supp ρ+[−r, r], and let 1B be the corresponding indicator function.
Then the Lebesgue measure of B satisfies λ(B) ≤ 4r1N (supp ρ; r1). By Cauchy-
Schwartz

1 =

∫

1B(x)φ(x) dx ≤ ‖1B‖2 ‖φ‖2 .

Since ‖1B‖2 =
√
λ(B), equation (6.30) follows.
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To see (6.31), apply (6.30) on the probability measure ρ|X defined by ρ|X(Y ) =
1

ρ(X)ρ(X ∩ Y ); one has

d(ρ|X ∗Ψr)

dx
(y) =

{
1

ρ(X)
d(ρ∗Ψr)

dx (y) if y ∈ X,

0 if y 
∈ X;

hence ‖d(ρ|X ∗Ψr)/dx‖22 ≤ ρ(X)−2 ‖d(ρ ∗Ψr)/dx‖22. �

Proposition 6.11. Let ρ be a probability measure supported on the unit ball B0,1

of Rd so that Eα(ρ) < ∞ for some 0 < α < d, 0 < r < 1, and let η be a measure on
Sd−1 such that for some cη, β > 0

(6.32) η(Bθ,ε) ≤ cηε
β for every ε > r and θ ∈ Sd−1.

Then for any β′ < β

∫

θ

∫

t

|ρ̂θ(t)|2
∣
∣
∣Ψ̂r(t)

∣
∣
∣
2

(1 + |t|)β′+α−d dt dη(θ)(6.33)

≤ cηCd

∫

Rd

|ρ̂(x)|2
∣
∣
∣Φ̂r(x)

∣
∣
∣
2

(1 + |x|)α−d dx+ cηC(α, β, β′, d).

Interpretation: if α + β′ > d and η is (C,α′)-regular at scale r for α′ > α,
then by (5.5) the right-hand side of (6.32) is bounded from above by a constant
(depending on α, α′, β, β′, C, . . . ) while the left-hand side dominates

∫

θ

∥
∥
∥
∥
d(ρ ∗Ψr)

dx

∥
∥
∥
∥

2

2

dη(θ).

In view of Lemma 6.10, this in particular implies that for η-many choices of θ, the
covering number of supp(ρθ) by r-intervals is large.

Proof of Proposition 6.11. Our proof follows closely that of [28, Prop. 6.1]. Let
χ be a smooth, compactly supported function on R

d with nonnegative Fourier
transform and let χ ≡ 1 on B0,1. Then ρ = ρ · χ and hence ρ̂ = ρ̂ ∗ χ̂. It follows

that |ρ̂|2 ≤ |ρ̂|2 ∗ χ̂; also since χ is smooth, compactly supported,

|χ̂(ξ)| < CN (1 + |ξ|)−N for every N ;

we shall assume below that N ≥ 2d. Thus

∫

Sd−1

∫

R

∣
∣
∣ρ̂θ(t)Ψ̂r(t)

∣
∣
∣
2

(1 + |t|)β′+α−d dt dη(θ)

(6.34)

≤ C

∫

Sd−1

∫

R

∫

Rd

χ̂(θt− x)
∣
∣
∣ρ̂(x)Φ̂r(x)

∣
∣
∣
2

(1 + |t|)β′+α−d dt dη(θ) dx

≤ C ′
N

∫

Rd

∣
∣
∣ρ̂(x)Φ̂r(x)

∣
∣
∣
2
∫

Sd−1

∫

R

(1 + |θt− x|)−N (1 + |t|)β′+α−d dt dη(θ) dx.
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We estimate the innermost integral in the last line of the above equation as
follows:

∫

R

(1 + |θt− x|)−N (1 + |t|)β′+α−d dt

≤ 2d (1 + |x|)β′+α−d

∫

|x|/2<|t|<2|x|
(1 + |θt− x|)−N dt

+ C(N, β′, α)(1 + |x|)−N

≤ Cd,N (1 + |x|)β′+α−d

(

1 + |x| d�
(

θ,
x

|x|

))−N+d

+ C(N, β′, α)(1 + |x|)−N .

Using (6.32), we have (recall that N > 2d)

∫

Sd−1

(

1 + |x| d�
(

θ,
x

|x|

))−N+d

dη(θ)

≤ η

{

θ : d�

(

θ,
x

|x|

)

< |x|−1

}

+
∑

k≥0

2−(N−d)k η

{

θ : 2k |x|−1 ≤ d�

(

θ,
x

|x|

)

< 2k+1 |x|−1

}

≤ 10cη max(r, (1 + |x|)−1)β.

It follows that the integral on the last line of (6.34) is at most

10Cd,N cη

∫

|x|<r−β/β′
max(r, (1 + |x|)−1)β

∣
∣
∣ρ̂(x)Φ̂r(x)

∣
∣
∣
2

(1 + |x|)β′+α−d dx(6.35)

+ 10Cd,N cη

∫

|x|>r−β/β′
rβ
∣
∣
∣Φ̂r(x)

∣
∣
∣
2

(1 + |x|)β′+α−d dx

+ C ′(N, β′, α).

For |x| < r−β/β′
one has the trivial inequality

rβ ≤ max(|x| , 1)−β′ ≤
(
1 + |x|

2

)−β′

;

hence as β′ ≤ d,

max(r, (1 + |x|)−1)β ≤ 2d(1 + |x|)−β′
.

We also note that Φ̂r(x) < CN1
(r |x|)−N1 for every N1; hence (6.35) is bounded

from above by

C ′
d,N cη

∫ ∣
∣
∣ρ̂(x)Φ̂r(x)

∣
∣
∣
2

(1 + |x|)α−d dx+ C ′(N, β′, α)(6.36)

+ C ′
d,N cη CN1

∫

|x|>r−β/β′
rβ(r |x|)−N1 |x|β

′+α−d
dx.

As long as N1 is large enough (depending on β, β′, d, α), the integral on the second
line of (6.36) is bounded by a constant (depending on the same set of parameters).

�
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As in Section 6.B, we interpret the identity

μ̂n(b) =
∑

g

ν∗m(g)μ̂n−m(gtrb)

to mean that for “many” g in the support of ν∗m, the set of large Fourier coefficients
At′,n−m of μn−m contains “a substantial proportion of” gtrA. This later set we
consider as a perturbation of a rescaled and rotated orthogonal projection of A
in the direction g expands the most (in the notation of Section 4.A, the direction
perpendicular to H(g)).

Lemma 6.12. There are ε0, C, c8 > 0 (depending on ν) and an absolute constant
q > 0 so that if for some 1/2 > t > 0, 1 ≤ M < N with

(6.37) log
N

M
> c8 log

1

t
and n ≥ c8 log

N

M

it holds that

N (At,n ∩ B0,N ;M) >

(
N

M

)d−ε0

,

then there are m,M ′, N ′ with M ′ ≥ M ,

m ≤ c8 log
N

M
, N ′ ≤ N

(
N

M

)c8

,
N ′

M ′ ≥
(
N

M

)1/c8

,

and ξ ∈ P
d−1 so that if R denotes the “rectangle” B0,N ′ ∩ NbdM ′(ξ) and t′ = Ctq,

then

(6.38) N (At′,n−m ∩R;M ′) >
t′N ′

M ′ .

Proof. Let τ be as in Lemma 4.5, and set ε0 = τ/3 . Assume that for t, n,M,N as
in the statement of Lemma 6.12 we have that

N (At,n ∩ B0,N ;M) >

(
N

M

)d−ε0

.

By Lemma 6.7 applied with ε = τ/30 there is an N1 ∈ (M,N) with log(N1/M) >
1
2 log(N/M) so that At1,n ∩ B0,N1

contains a subset E which is (Ct−2, d − 2τ/3)-

regular at scale M , where t1 = t2/4 and C depends only on τ . As before, we may
assume

(6.39)
1

|E|

∣
∣
∣
∣
∣

∑

b∈E

μ̂n(b)

∣
∣
∣
∣
∣
≥ t1

2

since we may always choose a subset E1 ⊂ E of cardinality ≥ |E| /4 on which
the above inequality holds which is (Ct−2, d− 2τ/3)-regular (possibly for a slightly
different C).

Let m1 = κ log(N1/M) (for a large constant κ to be determined later depending
on ν), and set n1 = n−m1. For any g ∈ supp(ν∗m1) set

E(g) = E ∩ (gtr)−1A t1
8 ,n1

,

Gstat =

{

g ∈ supp ν∗m1 : |E(g)| > t1
8
|E|

}

.
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By (6.39), as μn = ν∗m1 ∗ μn1
,

1

|E|
∑

g

ν∗m1(g)

∣
∣
∣
∣
∣

∑

b∈E

μ̂n1
(gtrb)

∣
∣
∣
∣
∣
≥ t1

2
,

and it follows that for a set of g of ν∗m1-measure at least t1/4 one has
∑

b∈E

μ̂n1
(gtrb) ≥ t1

4
|E| .

By Chebyshev inequality any such g satisfies |E(g)| ≥ t1 |E| /8; hence we conclude
that

ν∗m1(Gstat) ≥
t1
4
.

Let ω = (λ1 − λ2)/20, and set

Glen =

{

g ∈ Γ : |λi −
1

m1
log σi(g)| < ω for i = 1, 2

}

.

By Theorem 4.3 and (6.37), if c8 is sufficiently large (depending on ν),

ν∗m1(Glen) > 1− t1/8;

hence ν∗m1(Glen ∩ Gstat) ≥ t1/8. Let G = Gstat ∩ Glen and let η be the probability
measure on P

d−1 defined by

η(Ω) =
ν∗m1 {g ∈ G : θ(g) ∈ Ω}

ν∗m1(G) .

By Lemma 4.5, for any ξ ∈ P
d−1 and e−m1 < r < r0 (with r0 = e−m0 and τ as in

that lemma)

η(Bξ,r) ≤ 4t−1
1 rτ .

Applying Proposition 6.11 with β = τ , β′ = 5τ
6 , α = d− 5τ

6 , and ρ = 1
|E|

∑
b∈E δb/N1

,
we get

(6.40)

∫

ξ

∥
∥
∥
∥
d(ρξ ∗Ψr)

dx

∥
∥
∥
∥

2

2

dη(ξ) ≤ C ′t−1
1

[

Cd

∫

Rd

|ρ̂(x)|2
∣
∣
∣Φ̂r(x)

∣
∣
∣
2

(1 + |x|)α−d dx

+ C(α, β, β′, d)

]

.

Recall that ρ is (ct−2, d − 2
3τ )-regular at scale M/N1; moreover if κ ≥ c−1

1 , we
have that r := M/N1 ≥ e−c1m1 . It follows that
∫

Rd

|ρ̂(x)|2
∣
∣
∣Φ̂r(x)

∣
∣
∣
2

(1 + |x|)α−d dx � Eα(ρ ∗Ψr) (by (5.5))

≤ c′′t−2 = 8c′′t−1
1 (since α < d− 2τ/3)

with c′, c′′ depending on τ, ν. Substituting into (6.40), we get
∫

ξ

∥
∥
∥
∥
d(ρξ ∗Ψr)

dx

∥
∥
∥
∥

2

2

dη(ξ) ≤ c∗t
−2
1 .

We conclude that there is a g0 ∈ G for which

(6.41)

∥
∥
∥
∥
d(ρξ0 ∗Ψr)

dx

∥
∥
∥
∥

2

2

≤ c∗t
−2
1 with ξ0 = θ(g0).
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Set

M ′ = max(N1e
σ2(g0),Meσ1(g0)),

N ′ = N1e
σ1(g0).

Since g0 ∈ Glen, we have that

log(N ′/M ′) ≥ min(log(N1/M), (λ1 − λ2 − 2ω)m1) � log(N/M)

(the implicit constant depending on ν). Also clearly M ′ ≥ M . Since g0 ∈ Gstat,
we have that |E(g0)| > t1 |E| /8; hence ρ( 1

N1
E(g0)) ≥ t1/8. Let πξ0 denote the

orthogonal projection to the direction ξ0 = θ(g0) (considered as a map R
d → R).

By Lemma 6.10 and (6.41) it follows that

(6.42) N
(
πξ0(

1
N1

E(g0)); r
′
)
≥ c∗∗(r

′)−1t41

where r′ = M ′/N ′ ≥ r and c∗∗ = 2−8c−1
∗ . By definition of E(g0), we have that

g0
tr(E(g0)) ⊂ At1/8,n1

; moreover for b ∈ B0,N1

∥
∥
∥g0

trb− eσ1(g0)πξ0(b)θ(g
tr
0 )
∥
∥
∥ ≤ N1e

σ2(g0) ≤ M ′.

In particular, setting ξ = θ(gtr0 ) and with R the rectangle B0,N ′ ∩ NbdM ′(ξ),

gtr0 (E(g0)) ⊂ R ∩ At1/8,n1
,(6.43)

N
(
gtr0 (E(g0));M

′) ≥ 1
2N (πξ0(E(g0)); r

′) .(6.44)

By (6.42), (6.43), and (6.44), keeping in mind that r′ = M ′/N ′, the desired in-
equality (6.38) follows. �

Similarly to the proof of Proposition 6.3, Proposition 6.5 can easily be deduced
from Lemma 6.12 using Lemma 6.9. Note that in the notation of Lemma 6.9,∣
∣
∣log N1

M1
− log N2

M2

∣
∣
∣� log t1 with the implicit constant depending on ν. We omit the

details.

7. Granulated measures

The goal of this section is to prove Proposition 3.1 and hence our main result,
Theorem A, which follows easily from it. Assume that μn = ν∗n ∗ μ0 satisfies

|μ̂n0
(a0)| ≥ t0 > 0

where n0 is assumed to be larger than a constant multiple of log(2‖a0‖/t0). The
goal is to deduce that for any λ < λ1 there is a C so that there exists some m∗ so
that for every m > m∗

μn0−m(WQ,e−λ·m) >

(
t0
2

)C

, where Q <

(
2‖a0‖
t0

)C

.

We recall the notation

RQ =

{

(
p1
q
, . . . ,

pd
q
) ∈ T

d : q ≤ Q

}

, WQ,r =
⋃

x∈RQ

Bx,r.

Unless otherwise specified, all other constants defined in this section depend only
on ν (and hence indirectly also on Γ).
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We outline the ingredients of the argument in Propositions 7.1–7.4 below and
formally deduce Proposition 3.1. The proofs of Propositions 7.1–7.4 are given in
Sections 7.A–7.D below.

In the first phase of the proof (Section 6, Theorem 6.1) it was shown that
the set of significant Fourier coefficients

{
a ∈ Z

d : |μ̂n0−m(a)| > t
}
in large balls{

a ∈ Z
d : ‖a‖ < N

}
has positive density when viewed at resolution M = N1−κ.

We shall use this information on Fourier coefficients to show that a certain portion
of the measure μn0−m on the torus Td is (1−κ)-granulated at scale ρ = 1/N in the
following sense.

Let μ be a probability measure on T
d. Say that a t-portion of μ is α-granulated

at scale ρ (here α < 1 and ρ > 0 is smaller than a power of t/2) if there exists a
ρα-separated set X ⊂ T

d so that

μ(Nbdρ(X)) = μ(
⋃

x∈X

Bx,ρ) > t.

The information on significant Fourier coefficients of μn obtained in the first phase
of the proof (Section 6, Theorem 6.1) enables one to show that a significant portion
of the measures μn0−m is (1− κ)-granulated.

Proposition 7.1 (Initial granulation estimate). There exist constants 1 < L1 <

L2, κ > 0, and c1, c2 so that if |μ̂n0
(a0)| ≥ t0 > 0, a0 
= 0, then for m ≥ c1·log 2‖a0‖

t0
,

there exist ρ ∈ (L−m
2 , L−m

1 ) and a finite set X ⊂ T
d so that

(1) X is r = ρ1−κ-separated,

(2) μn0−m

(⋃
x∈X Bx,ρ

)
>
(
t0
2

)c2 .

Let us say that a probability measure μ is β-concentrated around x ∈ T
d at scale

ρ if μ(Bx,ρ) > ρβ. So Lebesgue measure is d-concentrated, while atomic measures
are 0-concentrated, at all scales. Observe that if α < d and α · d < β < d, then a
probability measure μ which is α-granulated at sufficiently small scale ρ has points
which are β-concentrated: since a ρα-separated subset on the d-torus has O(ρ−d·α)
points, an average ρ-ball with center x ∈ X has μ-mass

μ(Bx,ρ) > const · t · ρα·d > ρβ.

Thus μn0−m has points which are β-concentrated where β = d − κ > (1 − κ) · d,
assuming the scale ρ is small compared to t. The next step of the argument allows
us to bootstrap this concentration phenomenon from β0 = d− κ down to βN = δ,
where δ > 0 is some fixed concentration goal determined in Proposition 7.3 below.
The bootstrapping procedure is performed some finite number N = N(κ, δ) of
times.

Proposition 7.2 (Bootstrapping concentration). Given ε > 0, there are γ > 0 and
�0 so that for n > � > �0 the following holds: given scales ρ < e−dλ1·� · r, there are
scales

r′ = e−(λ1+ε)·� · r, ρ′ = e−(λ1−ε)·� · ρ
so that given an r-separated set X ⊂ T

d, one can construct an r′-separated set
X ′ ⊂ T

d with

|X ′| ≤ |X| and μn−�(
⋃

y∈X′

By,ρ′) >

(

μn(
⋃

x∈X

Bx,ρ)

)d

− e−γ·�.
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The initial granulation α = 1−κ gives r0
ρ0

= ρ−κ
0 so the above proposition can be

applied with � as big as 1
dλ1

log( r0ρ0
) = κ

dλ1
log( 1

ρ0
). With half that big �, we still get

a shrinking factor of e−(λ1−ε)·� < ρ
κ/3d
0 in the scale of concentrated balls produced

in the proposition. The fact that the ratio r′

ρ′ in the output is close to the initial

ratio r
ρ allows to apply the proposition with a fixed � for a number N of iterations

and obtain very high concentrations. The loss of mass is not very drastic if the
initial portion τ0 > (t0/2)

c2 of (1−κ)-granulated measure μn0−m is large compared
to the scale ρ and e−γ�.

The following proposition shows that a certain level of concentration can occur
only near rational points. This determines the desired concentration level δ > 0
mentioned above.

Proposition 7.3 (Rational approximation). There are δ > 0 and c4 < ∞ so that
for any small ρ > 0

μn(Bz,ρ) > ρδ =⇒ Bz,ρ ⊂ WQ,r,

for r = ρ9/10 and Q = ρ−1/10, provided n > c4 · log(1/ρ).

Hence assuming that a significant μn-mass is granulated with exponent δ, μn

gives this significant mass to WQ,r with r = Q−9. Of course the factor 9 is arbitrary
here; for the following we could work with any factor bigger than say 3.

The final step of the proof uses the Γ-invariance of the set RQ to show that most
of the μn mass of WQ,r =

⋃
x∈RQ

Bx,r must be concentrated near the centers RQ

of these balls.

Proposition 7.4 (Tight bootstrapping). Given ε > 0, there are m∗ and ω > 0 so
that if r > 0, Q < ∞, and m > m∗ satisfy

edλ1·m · r <
1

Q2
,

then

μn−m(WQ,e−(λ1−ε)·m·r) > μn(WQ,r)− e−ω·m

assuming n > m.

This is done by considering the intersections of a large number N > eδ·m of
translates g−1

i (WQ,r), where g1, . . . , gN are chosen using the distribution ν∗m of
the m-step random walk.

Let us now deduce Proportion 3.1 from these propositions, which are proved in
Sections §§7.A–7.D below.

Proof of Proposition 3.1. We assume that |μ̂n0
(a0)| ≥ t0 > 0 for some a0 ∈ Z

d\{0}.
We shall work with n0 > m > C · log 2‖a0‖

t0
where the value of C will be determined

implicitly in the proof.
Our first goal is to show that for some constants C1, D, 1 < L3 < L4 and any

m0 > C1 · log 2‖a0‖
t0

there exist ρ with L−m0
4 < ρ < L−m0

3 and a finite set Y ⊂ T
d

so that

(7.1) μn0−m0
(By,ρ) > ρδ (∀ y ∈ Y ), μn0−m0

(
⋃

y∈Y

By,ρ) >

(
t0
2

)D

where δ > 0 is the constant from Proposition 7.3.
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Proposition 7.1 provides 1 < L1 < L2 and κ > 0, so that for large m00 there
exist ρ0 ∈ (L−m00

2 , L−m00
1 ) and a finite set X0 ⊂ T

d which is r0-separated so that

r0 = ρ1−κ
0 , μn0−m00

(
⋃

x∈X0

Bx,ρ0
) >

(
t0
2

)c2

.

We shall amplify this initial concentration by a number (N below) of iterations
of the bootstrapping procedure in Proposition 7.2. The relevant parameters are
chosen as follows:

� ∈ N so that e−2dλ1·� >
ρ0
r0

= ρκ0 > e−3dλ1·�,(7.2)

N ∈ N so that δN · κ > 6d2,(7.3)

ε > 0 so that 2N · ε < dλ1.(7.4)

Here δ > 0 is provided by Proposition 7.3 and κ by Proposition 7.1. Note that
� � log 1

ρ0
� m00, i.e., the ratios between these quantities are bounded from below

and from above by finite positive constants (depending on ν).
For j = 1, . . . , N − 1 set ρj+1 = e−j(λ1−ε)·� · ρ0 and rj+1 = e−j(λ1+ε)·� · r0. Then

(7.5)
ρ0
r0

< · · · < ρN
rN

= e2Nε� · ρ0
r0

< e2Nε�−2dλ1� < e−dλ1�,

where the last inequality is justified by (7.2) and (7.4).
We have arranged ρj < e−dλ1� · rj for j = 0, . . . , N , and, assuming that � > �0,

we may apply Proposition 7.2 inductively starting from the set X0 provided by
Proposition 7.1. This yields a finite sequence of sets X1, . . . , XN , where each Xj is
an rj-separated set on the torus; the sets do not increase in cardinality:

(7.6) |XN | ≤ · · · ≤ |X1| ≤ |X0| < constd · r−d
0 < ρ−d

0 ,

while the masses

τj = μn0−j�(
⋃

x∈Xj

Bx,ρj
) satisfy τj+1 > τdj − e−γ·�.

Here γ > 0 depends on ε > 0, N , κ > 0 and δ > 0, and these constants depend on
ν but not on �, m00, etc. So choosing C1 large enough, we may ensure that m00,
and thus �, is large compared to log(2/t0) so that

e−γ·� <

(
t0
2

)c2·(d+1)N

.

This implies, by induction on i, that τi > 2e−γ·� and τi+1 > 1
2τ

d
i > τd+1

i . In
particular the last set XN satisfies

μn0−N�(
⋃

x∈XN

Bx,ρN
) = τN >

(
t0
2

)c2·(d+1)N

.

We now use the fact that |XN | has few elements, estimated by (7.6), to extract the
subset Y of very concentrated ρN -balls:

(7.7) Y =

{

x ∈ XN : μn0−N�(Bx,ρN
) >

τN
2 · |XN |

}

.
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Then

μn0−N�(
⋃

y∈Y

By,ρN
) >

τN
2

>

(
t0
2

)D

,

where D is set to be D = c2 · (d+ 1)N + 1. Finally we claim that

(7.8)
τN

2|XN | > (ρN )δ.

Indeed, assuming m00 is large compared to log(2/t0), we have

τN
2|XN | >

(
t0
2

)D

· ρd(1−κ)
0 > ρd0.

Using (7.3) and (7.2) and since N ≥ d, it follows that

(ρN )δ = e−δN(λ1−ε)·� · ρδ0 < e−δN
λ1
2 � <

(
e−3dλ1�

)d/κ
< ρd0.

With Y as in (7.7), ρ = ρN , m0 = N�, the claim (7.1) is proven.
Applying Proposition 7.3 to the conclusion (7.1), we deduce that for some C2,

C3 > 1, for m0 > C2 · log 2‖a0‖
t0

, and n0 > C3 ·m0, one has

(7.9) μn0−m0
(WQ,r) >

(
t0
2

)D

, where r = Q−9, Q ∈ (L
m0
10
3 , L

m0
10
4 ).

The proof of Proposition 3.1 concludes with the second bootstrap Proposition 7.4
applied a number of times. Given λ < λ1, we choose

ε = min(
λ1

3
,
λ1 − λ

2
)

and let ω = ω(ε) > 0 be the corresponding constant from Proposition 7.4.
With ε < λ1 − λ there are 0 < α < β and k0 ∈ N, so that any large m can be

written as

m = m0 +m1 +m2 + · · ·+mk,

where k ≤ k0 and

λm < (λ1 − ε) · (m−m0),(7.10)

α ·m < m0 < β ·m,(7.11)

(
7

10dλ1
logL3) ·m0 < m1 < (

7

10dλ1
logL4) ·m0,(7.12)

(1 +
1

3d
) ·mi < mi+1 < (1 +

1

2d
) ·mi (i ≥ 1).(7.13)

We set C to be large enough so that writing m > C · log 2‖a0‖
t0

as m = m0+ · · ·+mk

in the form above, we get m0 > C2 · log 2‖a0‖
t0

and m1 > m∗. Then for r and Q as

in (7.9) condition (7.12) implies

edλ1m1 < L
7m0
10

3 < Q7 =
1

r ·Q2
.

Denoting r0 = r and ri = e−(λ1−ε)·(m1+···+mi) · r, i ≥ 1, we also obtain

edλ1·mi+1 · ri <
1

Q2
.
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Indeed, this is proven by induction using (7.13):

edλ1·mi+1 < edλ1·mi · e
λ1
2 ·mi <

e
λ1
2 ·mi

ri ·Q2
<

1

ri+1 ·Q2
.

Therefore, Proposition 7.4 can be applied to deduce, using (7.10), that

μn0−m(WQ,e−λ·m) > μn0−m(WQ,e−(λ1−ε)·(m1+···+mk)·r)

> μn0−m0
(WQ,r)− e−ω·m1 − · · · − e−ω·mk .

For some c > 0, independent of m, etc., we have
∑

e−ω·mi < e−c·m. If C > 2D/c,
then it follows, using (7.9), that

μn0−m(WQ,e−λ·m) > μn0−m0
(WQ,r)− e−c·m >

(
t0
2

)D

− e−c·m >

(
t0
2

)D+1

.

This completes the proof of Proposition 3.1. �

7.A. Initial granulation: Proof of Proposition 7.1. Proposition 7.1 follows
from Theorem 6.1 and the following general statement with M = N1−κ, ρ = 1

M ,
s = t = tp0.

Proposition 7.5. There exists c > 0 so that if a probability measure μ on T
d

satisfies

N
({

a ∈ Z
d ∩ B0,N : |μ̂(a)| > t

}
;M

)
> s ·

(
N

M

)d

with M < constd ·N , then there exists an 1
M -separated set X ⊂ T

d with

μ

(
⋃

x∈X

Bx, 1
N

)

> c · (ts)3.

Proof. We shall need an auxiliary smooth function F on the torus such that

0 ≤ F ≤ C1 ·Nd, supp(F ) ⊂ B0, 1
N
,

∫

Td

F dx = 1

and the Fourier coefficients

F̂ (a) ≥ 0, F̂ (a) ≥ 1

2
for a ∈ Z

d ∩ B0,N .

Here C1 < ∞ is a constant depending on d only. To construct such a function,
consider the step function F1(x) = m(B0,r)

−1 · 1B0,r
(x) where r = ε/N for some

fixed small ε > 0. Then F̂1(a) is close to 1 for a ∈ Z
d ∩ B0,N . If F2 is a smooth

symmetric approximation of F1, then the convolution F = F2 ∗ F̌2 has the desired
properties.

Let Ã be an M -separated set of size |Ã| > s(N/M)d consisting of coefficients

a ∈ Z
d ∩ B0,N with |μ̂(a)| > t. Upon passing to a subset A ⊂ Ã of size

|A| ≥ |Ã|
4

>
s

4

(
N

M

)d

,

we may assume that Re(eiθ · μ̂(a)) > t
2 for some fixed θ ∈ [0, 2π). Let

φ(x) =
∑

a∈A

ea(x).
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As usual, ea(x) = e−2πi〈x,a〉 are the standard characters. Note that

|φ(x)|2 = (
∑

a∈A

ea(x)) · (
∑

b∈A

eb(x)) =
∑

a,b∈A

ea−b(x).

The probability measure λ = μ ∗ F has a smooth density g : Td → [0,∞) with

ĝ(b) = μ̂(b) · F̂ (b). On A we have F̂ ≥ 1/2 and Re(eiθμ̂) > t/2. Therefore

(7.14)

∣
∣
∣
∣

∫

Td

φ dλ

∣
∣
∣
∣ ≥

∑

a∈A

Re(eiθ · ĝ(a)) > t

4
· |A| > ts

24
·
(
N

M

)d

.

We shall see that the right-hand side is close to an a priori upper estimate for the
left-hand side. Partition T

d into Md “cubes” Qi with side length 1
M and centers

ci ∈ T
d. By the Cauchy-Schwartz inequality

(7.15)

∣
∣
∣
∣

∫

Td

φdλ

∣
∣
∣
∣ ≤

∑

i

∣
∣
∣
∣

∫

Td

1Qi
· φ dλ

∣
∣
∣
∣ ≤

∑

i

λ(Qi)
1
2 ·
(∫

Qi

|φ|2 dλ
) 1

2

.

Let r =
√
d

M which is assumed to dominate 1
N . Then Qi ⊂ Bci,r/2 and y+Qi ⊂ Bci,r

for any y ∈ supp(F ) ⊂ B0, 1
N
. Thus

λ(Qi) =

∫

Td

F (y) · μ(y +Qi) dy ≤ μ(Bci,r).

Since dλ(x) = g(x) dx, we have
∫

Qi

|φ|2 dλ ≤ Gi ·
∫

Qi

|φ|2 dx, where Gi = max
x∈Qi

g(x).

We shall estimate
∫
Qi

|φ|2 dx using an auxiliary function f on T
d; we take f to be

the product f(x) =
∏d

i=1 hM (xi) of one-dimensional Fejér kernels

hn(u) =
1

n

n∑

k=1

k∑

j=−k

e2πju =
1

n

(
sin nu

2

sin u
2

)2

.

Note that f is a nonnegative function, with f(x) > 10−d · Md on the 1
M -cube

Q0 = [− 1
2M , 1

2M ]d + Z
d around 0 ∈ T

d. The Fourier coefficients f̂ take values in

[0, 1] and vanish outside the [−M,M ]d ∩ Z
d-cube. Thus

∫

Qi

|φ(x)|2 dx =

∫

Q0

|φ(ci + y)|2 dy ≤ 10d

Md

∫

Q0

|φ(ci + y)|2f(y) dy

≤ 10d

Md

∫

Td

|φ(ci + y)|2f(y) dy =
10d

Md

∫

Td

∑

a,b∈A

ea−b(ci + y) · f(y) dy

=
10d

Md

⎛

⎝
∑

a,b∈A

ea−b(ci)f̂(a− b)

⎞

⎠ ≤ 10d

Md
·
∑

a,b∈A

|f̂(a− b)|.

Let C2 denote the constant which is 10d times the maximal cardinality of a 1-

separated set in [−1, 1]d. Since A is M -separated and 0 ≤ f̂ ≤ 1, we have

10d

Md
·
∑

a,b∈A

|f̂(a− b)| ≤ C2 · |A|
Md

≤ C2 ·Nd

M2d
.
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The density g of λ = μ ∗ F has the following upper bound:

(7.16) g(x) =

∫

F (x− y) dμ(y) ≤ C1 ·Nd · μ(Bx, 1
N
).

Since Nbd 1
N
(Qi) ⊂ Bci,r, it follows that

Gi = max
x∈Qi

g(x) ≤ C1N
dμ(Bci,r).

Let 0 ≤ Hi ≤ 1 denote the ratio, so Gi = Hi · C1N
dμ(Bci,r). By (7.14 and 7.15)

ts

24

(
N

M

)d

≤
∑

i

μ(Bci,r)
1
2 ·G

1
2
i ·

√
C2 ·N

d
2

Md

≤
∑

i

μ(Bci,r) ·H
1
2

i ·
√
C1 · C2 ·

(
N

M

)d

.

Let C3 =
√
C1 · C2. We have

∑

i

μ(Bci,r) ·H
1
2
i >

ts

24C3
.

Therefore

(7.17)
∑

i∈I

μ(Bci,r) >
ts

25C3
where I =

{

i : H
1
2

i >
ts

25C3

}

.

For each i ∈ I choose xi ∈ Qi so that

g(xi) > (
ts

25C3
)2 · C1 N

d · μ(Bci,r).

Then (7.16) gives

μ(Bxi,
1
N
) >

g(xi)

C1Nd
>

(ts)2

210C2
3

· μ(Bci,r),

and using (7.17),
∑

i∈I

μ(Bxi,
1
N
) >

(ts)3

215 · C3
3

.

The set X̃ = {xi : i ∈ I} visits each of the cubes Qj at most once. Thus it may
be separated into 2d subsets each of which never visits neighboring Qj ’s and is

therefore 1
M -separated. At least one of the 2d such subsets X ⊂ X̃ has

μ(
⋃

x∈X

Bx,r) =
∑

x∈X

μ(Bx, 1
N
) > 2−d ·

∑

i∈I

μ(Bxi,
1
N
) >

(ts)3

2d+15 · C3
3

.

This completes the proof of the proposition. �
7.B. Bootstrapping the concentration: Proof of Proposition 7.2. We start
with a few lemmas.

Lemma 7.6. Given ε > 0, there are γ > 0 and m0 ∈ N so that for n > m ≥ m0

one can find a subset G ⊂ Γd so that for (g1, . . . , gd) ∈ G,

(i) | 1
m

log σj(gi)− λj | < ε (1 ≤ i ≤ d, 1 ≤ j ≤ d),

(ii) vol(θ(g1), . . . , θ(gd)) > e−ε·m,

(iii) vol(θ(gtr1 ), . . . , θ(g
tr
d )) > e−ε·m
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and such that for any Borel subset A ⊂ T
d one has

μn(A)d − e−γ·m ≤
∑

�g∈G
ν∗m(g1) · · · ν∗m(gd) · μn−m(g−1

1 A ∩ · · · ∩ g−1
d A).

Proof. By Theorem 4.3 for some ρ > 0 and sufficiently large m the set Glen of
d-tuples �g ∈ Γd satisfying (i) has

(ν∗m)d(Glen) > (1− e−ρ·m)d.

The set Gtrans of sufficiently “transversal” d-tuples �g ∈ Γd, namely ones satisfying
conditions (ii) and (iii), has (Lemma 4.6) mass

(ν∗m)d(Gtrans) > 1− e−(ε/p)·m.

Let G = Glen ∩ Gtrans and let γ > 0 be small enough so that

(ν∗m)d(G) > (1− e−ρ·m)d − e−(ε/p)·m > 1− e−γ·m.

Given A ⊂ T
d, the function f(x) =

∑
g∈Γ ν

∗m(g) · 1A(gx) on T
d satisfies

∫

Td

f(x) dμn−m(x) =
∑

g∈Γ

ν∗m(g) · μn−m(g−1A) = μn(A).

By the convexity of t �→ td we deduce that

μn(A)d =

(∫

Td

f dμn−m

)d

≤
∫

Td

f(x)d dμn−m(x)

=
∑

�g∈Γd

ν∗m(g1) · · · ν∗m(gd) · μn−m(g−1
1 A ∩ · · · ∩ g−1

d A)

and the lemma follows by restricting the summation to �g ∈ G. �

Lemma 7.7. For any x̄1, . . . , x̄d, ȳ1, . . . , ȳd ∈ P
d−1 one has

| vol(x̄1, . . . , x̄d)− vol(ȳ1, . . . , ȳd)| ≤
√
2 ·

d∑

i=1

d� (x̄i, ȳi) .

Proof. Assuming xi, yi are unit vectors, we have

| vol(x1, . . . , xd)− vol(y1, . . . , yd)| ≤
d∑

i=1

| vol(x1, . . . , xi − yi, . . . , yd)|

≤
d∑

i=1

‖xi − yi‖ ≤
√
2 ·

d∑

i=1

d� (x̄i, ȳi) .

�

Lemma 7.8. Given ε > 0, there is m0(ε) so that for m > m0 and any g1, . . . , gd ∈ Γ
with

| 1
m
σj(g)− λj | < ε (j = 1, 2),

vol(θ(gtr1 ), . . . , θ(g
tr
d )) > e−ε·m

one has

∀ v ∈ R
d \ {0} : max

1≤i≤d

‖giv‖
‖v‖ ≥ e(λ1−3ε)·m.
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Proof. First let us estimate

δ = max
1≤i≤d

d� (v,H(gi)) = max
1≤i≤d

d�
(
θ(gtri ), v

⊥) .

If the yi denote the projections of some unit vectors in x̄i = θ(gtri ) to v⊥, then
vol(ȳ1, . . . , ȳd) = 0. Hence it follows from Lemma 7.7 that

√
2 ·

d∑

i=1

d� (x̄i, ȳi) ≥ vol(x̄1, . . . , x̄d) > e−ε·m.

Thus δ > 1√
2d

· e−ε·m, which is larger than e−2ε·m for sufficiently large m. We have

max
1≤i≤d

‖giv‖
‖v‖ ≥ δ · min

1≤i≤d
‖gi‖ ≥ e−2ε·m · e(λ1−ε)·m > e(λ1−3ε)·m

as claimed. �

Proof of Proposition 7.2. Since λ1 > λ2 ≥ · · · ≥ λd and λ1 + · · ·+ λd = 0, we have

the strict inequality λ1−λd < dλ1. We fix a small 0 < δ < min( ε3 ,
(d−1)λ1+λd

2 ), with

�0 to be determined later. Lemma 7.6 provides a set G ⊂ Γd of d-tuples (g1, . . . , gd)
and γ > 0 so that

| 1
m

log σj(gi)− λj | < δ (1 ≤ i, j ≤ d),

vol(θ(g1), . . . , θ(gd)) > e−δ·�,

vol(θ(gtr1 ), . . . , θ(g
tr
d )) > e−δ·�,

and for any A ⊂ T
d

μn(A)d − e−γ·� ≤
∑

�g∈G
ν∗�(g1) · · · ν∗�(gd) · μn−�(g

−1
1 A ∩ · · · ∩ g−1

d A).

We apply this to the set A = Nbdρ(X) =
⋃

x∈X Bx,ρ of well-separated small balls
on the torus and fix a d-tuple (g1, . . . , gd) ∈ G with

μn(A)d − e−γ·� ≤ μn−�(g
−1
1 A ∩ · · · ∩ g−1

d A)

= μn−�(
⋃

x1,...,xd∈X

g−1
1 (Bx1,ρ) ∩ · · · ∩ g−1

d (Bxd,ρ)).

Consider the components Cx1,...,xd
= g−1

1 (Bx1,ρ) ∩ · · · ∩ g−1
d (Bxd,ρ), indexed by d-

tuples �x = (x1, . . . , xd) ∈ Xd, of the union in the right-hand side. We shall show
that most of these components are empty; in fact, there are at most |X|-many
components with C�x 
= ∅. We shall also show that these nonempty components are
r′-separated and have diameter less than ρ′. So choosing one point y from each
nonempty component C�x of g−1

1 A∩ · · · ∩ g−1
d A, we obtain a set Y with the desired

properties.
Let �x = (x1, . . . , xd) and �x′ = (x′

1, . . . , x
′
d) be two d-tuples from X, where C�x

and C�x′ are not empty, and assume that x1 = x′
1 = x. Then g−1

1 (Bx,ρ) intersects

both g−1
j (Bxj ,ρ) and g−1

j (Bx′
j ,ρ

). Applying gj , it follows that the set (gjg
−1
1 )(Bx,ρ)

intersects the ρ-balls around points xj , x
′
j ∈ X, which yields

‖xj − x′
j‖ < 2ρ+ ‖gj‖ · ‖g−1

1 ‖ · ρ < (2 + e(λ1+δ)·� · e(−λd+δ)·�) · ρ.
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Assuming �0 is large enough, for � ≥ �0 one has

2 + e(λ1+δ)·� · e(−λd+δ)·� < edλ1·�.

It follows that ‖xj − x′
j‖ < r and therefore xj = x′

j . This consideration applies to

all j = 2, . . . , d. So �x = �x′.
Let us choose representatives y ∈ C�x in nonempty components of g−1

1 A ∩ · · · ∩
g−1
d A and form the set Y . We just showed that associating x1 to y ∈ Cx1,...,xd

is
an injective map Y → X, so |Y | ≤ |X|.

Let us show that Y is r′-separated. Let y ∈ C�x, y
′ ∈ C�x′ , and y 
= y′. Then

x1 
= x′
1 ∈ X, while g1y ∈ Bx1,ρ and g1y ∈ Bx′

1,ρ
. Therefore

r < ‖x1 − x′
1‖ ≤ 2ρ+ ‖g1‖ · ‖y − y′‖.

Since ρ is much smaller than r and since ‖g1‖ < e(λ1+δ)·� < e(λ1+ε)·�, we have

‖y − y′‖ > ‖g1‖−1 · (r − 2ρ) > e−(λ1+ε)·� · r = r′

as claimed.
Let C�x be a nonempty component and let y ∈ C�x. We claim that C�x ⊂ By,ρ′ .

Indeed, for any z ∈ C�x and every i = 1, . . . , d both giy and giz are in Bxi,ρ, so that

max
1≤i≤d

‖giy − giz‖ ≤ 2ρ.

The above distances are measured on the torus. But since ‖g−1
i ‖ρ < 1/10, the whole

picture may safely be lifted to R
d, and one might think of the vector v = y − z

being such that

max
1≤i≤d

‖giv‖ ≤ 2ρ.

By Lemma 7.8 and the geometry of g1, . . . , gd this implies that

‖y − z‖ = ‖v‖ < e−(λ1−3δ)·� · 2ρ < e−(λ1−ε)·� · ρ = ρ′.

Therefore

g−1
1 A ∩ · · · ∩ g−1

d A ⊂
⋃

y∈Y

By,ρ′

and

μn−�(
⋃

y∈Y

By,ρ′) ≥ μn(
⋃

x∈X

Bx,ρ)
d − e−γ·�

as required. �

7.C. Rational approximation: Proof of Proposition 7.3. We shall need the
following technical lemma, which gives a sufficient condition for a linear combination
of d very proximal elements in SLd(R) to be invertible. Recall that for g ∈ SLd(R)
we denote by �(g) the ratio between the second longest and the longest axes of the
ellipsoid g(B0,1), i.e., �(g) = σ2(g)/σ1(g) = ‖g ∧ g‖/‖g‖2; proximal elements are
those with small �(g).

Lemma 7.9. Given g1, . . . , gd ∈ SLd(R) and constants c1, . . . , cd, let

ρ = max
1≤i≤d

�(gi), C = max
1≤i,j≤d

|ci|
|cj |

, L = max
1≤i,j≤d

‖gi‖
‖gj‖

and let v = min(v1, v2), where

v1 = vol(θ(g1), . . . , θ(gd)), v2 = vol(θ(gtr1 ), . . . , θ(g
tr
d )).
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Assume that

ρ <
v3

20d3CL
.

Then the matrix h =
∑d

i=1 cigi is invertible.

Proof. The idea is as follows: the transversality parameter v2 > 0 provides a lower
bound on the largest angle between an arbitrary vector z and the hyperplanes H(gi)
of “slow growth”. This lower bound and the proximality parameter ρ show that
any given vector z is stretched significantly by at least some of the maps gi; in
addition, for these maps giz̄ is close to the axis θ(gi). The fact that these directions
are in sufficiently general position (controlled by v1) is used to show that the longer
among the images giz do not cancel each other and cannot be offset by the shorter
images gjz either. The details follow.

Given a unit vector ‖z‖ = 1, reorder the gi’s so that

αi = d� (z̄, H(gi)) = d�
(
z̄⊥, θ(gtri )

)

decrease: α1 ≥ · · · ≥ αd. Let β = 4dρ/v and define k = max {1 ≤ i ≤ d : αi > β}.
Denoting xi = cigiz, we shall prove that

(7.18) ‖x1 + · · ·+ xk‖ > ‖xk+1‖+ · · ·+ ‖xd‖
thereby verifying that hz = x1+ · · ·+xd 
= 0. Since z was an arbitrary unit vector,
h is nonsingular.

Let ȳi denote the projection of θ(gtri ) to z̄⊥. Then vol(ȳ1, . . . , ȳd) = 0 and it
follows from Lemma 7.7 that

d∑

i=1

αi =

d∑

i=1

d�
(
z̄⊥, θ(gtri )

)
≥ v√

2
.

Therefore, α1 ≥ v/2d, which in turn is bigger than β = 4dρ/v by the assumptions
on ρ. Hence we are guaranteed that k ≥ 1. Using Lemma 4.1(3), for 1 ≤ i ≤ k we
have (with x̄i denoting the unit vector in direction xi)

‖xi‖ ≥ |ci| · ‖gi‖ · αi, d� (x̄i, θ(gi)) ≤
ρ

β
.

Thus applying Lemma 7.7 to

t = vol(x̄1, . . . , x̄k, θ(gk+1), . . . , θ(gd)) and vol(θ(g1), . . . , θ(gd)) ≥ v

gives

t > v −
√
2dρ

β
>

v

2
.

Since t ≤ d� (x̄1, span(x2, . . . , xk)), it follows that

‖x1 + · · ·+ xk‖ ≥ ‖x1‖ · t ≥ |c1| · ‖g1‖ · α1t ≥ |c1| · ‖g1‖ ·
v2

4d
.

At the same time, for k < i ≤ d one has (Lemma 4.1(2))

‖xi‖ ≤ |ci| · ‖gi‖ · (αi + �(gi)) < CL · |c1| · ‖g1‖ ·
5dρ

v

using αi ≤ β = 4dρ/v, ci < Cc1, ‖gi‖ ≤ L‖g1‖. Hence (7.18) follows from the
assumption ρ < (20d3CL)−1 · v3. �
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Proof of Proposition 7.3. Let γ > 0 and m0 be the constants from Lemma 7.6
corresponding to

ε = min(
λ1 − λ2

10
,
1

2
)

and choose δ > 0 small enough to ensure that Δ0 = dδ
γ − 1

10d(λ1+1) > 0. Then for

all ρ > 0, smaller than e−2Δ0 , one can find an integer m so that

(7.19)
1

10d(λ1 + 1)
· log 1

ρ
< m <

dδ

γ
· log 1

ρ
.

Taking c4 = dδ/γ and ρ0 = min(e−2Δ0 , e−m0/c4), we shall also ensure that given
0 < ρ < ρ0 and n > c4 log(1/ρ), our choice m = m(ρ) will satisfy m0 ≤ m < n.

Lemma 7.6 provides a set G ⊂ Γd of d-tuples �g = (g1, . . . , gd) with

| 1
m

log ‖gi‖ − λ1| < ε, i = 1, . . . , d,

| 1
m

log σ2(gi)− λ2| < ε, i = 1, . . . , d,

vol(θ(g1), . . . , θ(gd)) > e−ε·m,

vol(θ(gtr1 ), . . . , θ(g
tr
d )) > e−ε·m,

and such that

μn(Bz,ρ)
d − e−γ·m <

∑

�g∈G
ν∗m(g1) · · · ν∗m(gd) · μn−m(

d⋂

i=1

g−1
i (Bz,ρ)).

The assumption μn(Bz,ρ) > ρδ implies, using the second inequality of (7.19), that

μn(Bz,ρ)
d > ρdδ > e−γm.

Thus there exists a d-tuple (g1, . . . , gd) ∈ G with

μn−m(g−1
1 (Bz,ρ) ∩ · · · ∩ g−1

d (Bz,ρ)) > 0.

In particular, there exists w ∈ T
d such that

{g1w, g2w, . . . , gdw} ⊂ Bz,ρ.

We use ‖ · ‖ to denote the usual metric on both R
d and T

d, and we denote by
π : Rd → T

d the locally isometric projection. Choose �w, �z ∈ R
d with π(�w) = w

and π(�z) = z. For some integer vectors �ai ∈ Z
d

(7.20) ‖gi �w − �ai − �z‖ < ρ (i = 1, . . . , d).

Let c1 = · · · = cd−1 = 1, cd = 1 − d, so that
∑

ci = 0 and
∑

|ci| < 2d. Combining
the inequalities (7.20) with coefficients ci, we get

‖h�w −�b‖ < 2dρ

where h =
∑d

i=1 cigi is an integer d × d matrix and �b =
∑d

i=1 ci�ai is an integer

vector. Our choice of ε = λ1−λ2

10 and the following properties of g1, . . . , gd

max �(gi) <
e(λ2+ε)·m

e(λ1−ε)·m , max
|ci|
|cj |

< d < eε·m, max
‖gi‖
‖gj‖

< e2ε·m,

vol(θ(g1), . . . , θ(gd)) > e−ε·m, vol(θ(gtr1 ), . . . , θ(g
tr
d )) > e−ε·m,

imply that the assumptions of Lemma 7.9 are satisfied.
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Thus the integer matrix h is invertible, and its determinant q = det(h) is a
nonzero integer; in particular |q| ≥ 1. Then h−1 = (1/q) · k where k ∈ Md×d(Z).

Set �p = g1k�b ∈ Z
d. We have

‖z − π(
�p

q
)‖ ≤ ‖g1w − z‖+ ‖g1 �w − 1

q
g1k�b‖

≤ ρ+ ‖g1h−1‖ · ‖h�w −�b‖ < (1 + 2d ‖g1‖ ‖h−1‖) · ρ.
Let us estimate the factor ‖g1‖‖h−1‖ in terms of 1/ρ:

‖h‖ ≤
d∑

i=1

|ci| · ‖gi‖ ≤ 2de(λ1+ε)·m,

‖h−1‖ ≤ 1

q
· ‖h‖d−1 ≤ ‖h‖d−1 (using q ≥ 1),

1 + 2d‖g1‖‖h−1‖ < 1 + (2d)ded(λ1+ε)·m < ed(λ1+1)·m < ρ−
1
10 ,

with the last step justified by the first inequality in (7.19). We also assumed that
e(1−ε)m > e−m0/2 dominates the absolute factors like (2d)d. This gives

‖z − π(
�p

q
)‖ < ρ

9
10 , with |q| < ρ−

1
10

as claimed. �

7.D. Final Bootstrap: Proof of Proposition 7.4.

Lemma 7.10. Given ε1, ε2 > 0, there exist δ > 0 and m0 so that for m ≥ m0

any set G ⊂ Γ with ν∗m(G) > e−δ·m contains a subset F ⊂ G with cardinality
|F| > eδ·m, such that

| 1
m

log σj(g)− λj | < ε1 (j = 1, . . . , d, g ∈ F)

and every d-element subset {g1, . . . , gd} ⊂ F satisfies

vol(θ(gtr1 ), . . . , θ(g
tr
d )) > e−ε2·m.

Proof. Let Glen =
{
g ∈ Γ : | 1mσj(g)− λj | < ε1 (1 ≤ j ≤ d)

}
. By Theorem 4.3

there exist N = N(ε1) and c1 > 0 so that for m > N the set

Glen =

{

g ∈ Γ : | 1
m

log σj(g)− λj | < ε1 (j = 1, 2)

}

has ν∗m(Glen) > 1− e−c1·m. By Theorem 4.4, given ε2 > 0, there is c2 > 0 so that
for any hyperplane H,

ν∗m
{
g ∈ Γ : d�

(
θ(gtr), H

)
≤ e−ε2·m} < e−c2·m.

Let us take positive δ < min(c1, c2/d). For such δ and large m

(7.21) e−δ·m − e−c1·m − (eδ·m)d−1 · e−c2·m > 0.

Let G with ν∗m(G) > e−δ·m be given. We shall form the subset F ⊂ G by choosing
inductively elements from G′ = G∩Glen. Suppose g1, . . . , gn are already chosen. For
the next element gn+1 we can choose any g ∈ G′ for which the axis θ(gtr) makes an
angle of at least e−ε2·m with all hyperplanes of the form

θ(gtri1)⊕ · · · ⊕ θ(gtrid−1
)
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where i1 < · · · < id−1 is a (d− 1)-element subset of {1, . . . , n}. There are less than
nd−1 such hyperplanes. It follows that

ν∗m

⎛

⎝G′ \
⋃

1≤i1<···<id−1≤n

{
g : d�

(
θ(gtr), θ(gtri1)⊕ · · · ⊕ θ(gtrid−1

)
)
< e−ε2·m

}
⎞

⎠

> e−δ·m − e−c1·m − nd−1 · e−c2·m,

and in view of (7.21) the right-hand side is positive as long as n ≤ [eδ·m]. This
allows us to construct the desired set F with at least eδ·m elements. �

Proof of Proposition 7.4. Let δ > 0 be associated to ε1 = ε2 = ε
3 in Lemma 7.10;

take ω = δ/2 and m0 large enough. The basic relation

μn(WQ,r) =
∑

g∈Γ

ν∗m(g) · μn−m(g−1(WQ,r))

implies that the set

G =
{
g ∈ Γ : μn−m

(
g−1(WQ,r)

)
> μn(WQ,r)− e−δ·m}

has ν∗m(G) > e−δ·m. Let F ⊂ G be a subset of size |F| > eδ·m of well-shaped
elements in general position provided by Lemma 7.10. We shall consider the possible
intersections of the sets

g−1(WQ,r) =
⋃

x∈RQ

g−1(Bx,r) (g ∈ F).

Note that the set RQ of centers of the r-balls which form WQ,r is Q−2-separated:
∥
∥
∥
∥(

p1
q
, . . . ,

pd
q
)− (

p′1
q′
, . . . ,

p′d
q′
)

∥
∥
∥
∥ =

∥
∥
∥
∥(

q′p1 − qp′1
q · q′ , . . . ,

q′pd − qp′d
q · q′ )

∥
∥
∥
∥ ≥ 1

qq′
≥ 1

Q2
.

Suppose that for x, y ∈ RQ and g, h ∈ F the ellipses g−1(Bx,r) and h−1(By,r) have
a common point, say w. We have ‖x−gw‖ < r, ‖y−hw‖ < r, and ‖g−1‖, ‖h−1‖ <
e(−λd+ε1)·m. Note also that −λd < dλ1, and we may assume that 2e−(λd+ε1)·m <
edλ1·m. Therefore

‖g−1x− h−1y‖ ≤ ‖g−1x− w‖+ ‖w − h−1y‖
< ‖g−1‖ · ‖x− gw‖+ ‖h−1‖ · ‖y − hw‖

< 2e(−λd+ε1)·m · r < edλ1·m · r <
1

Q2
.

Since g−1x and h−1y belong to the Q−2-separated set RQ, they coincide: g−1x =
h−1y = z ∈ RQ.

This computation shows that for any d-element subset {g1, . . . , gd} ⊂ F we have

d⋂

i=1

g−1
i (WQ,r) =

⋃

z∈RQ

(
d⋂

i=1

g−1
i (Bgiz,r)

)

.

The conditions on F show, using Lemma 7.8, that for any d-element subset {g1, . . . , gd}
⊂ F and every v ∈ R

d

max
1≤i≤d

‖giv‖ ≥ e(λ1−ε)·m · ‖v‖.
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This implies that on the torus Td,

d⋂

i=1

g−1
i (Bgiz,r) ⊂ Bz,e−(λ1−ε)·m·r.

Therefore for any d-element subset {g1, . . . , gd} ⊂ F we have

d⋂

i=1

g−1
i (WQ,r) ⊂ WQ,e−(λ1−ε)·m·r.

For g ∈ F let Eg = g−1(WQ,r)\WQ,e−(λ1−ε)·m·r. We just showed that the collection
{Eg | g ∈ F} has no d-fold intersections. Thus

d >

∫ ∑

g∈F
1Eg

(x) dμn−m(x) =
∑

g∈F
μn−m(Eg).

Thus for at least one h ∈ F ⊂ G one has

μn−m(Eh) ≤
d

|F| < d · e−δ·m.

Therefore,

μn−m(WQ,e−(λ1−ε)·m·r) ≥ μn−m

(
h−1(WQ,r)

)
− μn−m(Eh)

> μn(WQ,r)− e−δ·m − d · e−δ·m

> μn(WQ,r)− e−ω·m,

assuming m > m0 where m0 is large enough. �
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Liapunoff d’un produit de matrices aléatoires indépendantes, Israel J. Math. 65 (1989), no. 2,
165–196. MR0998669 (91b:22006)

[19] Y. Guivarc’h and A. N. Starkov,Orbits of linear group actions, random walks on homogeneous
spaces and toral automorphisms, Ergodic Theory Dynam. Systems 24 (2004), no. 3, 767–802.
MR2060998 (2005f:37058)

[20] B. Kalinin and A. Katok, Invariant measures for actions of higher rank abelian groups,
Smooth ergodic theory and its applications (Seattle, WA, 1999), Proc. Sympos. Pure Math.,
vol. 69, Amer. Math. Soc., Providence, RI, 2001, pp. 593–637. MR1858547 (2002i:37035)

[21] A. Katok and R. J. Spatzier, Invariant measures for higher-rank hyperbolic abelian actions,
Ergodic Theory Dynam. Systems 16 (1996), no. 4, 751–778. MR1406432 (97d:58116)

[22] N. Katz and T. Tao, Some connections between Falconer’s distance set conjecture and
sets of Furstenburg type, New York J. Math. 7 (2001), 149–187 (electronic). MR1856956
(2002i:28013)

[23] Y. Katznelson, An introduction to harmonic analysis, John Wiley & Sons Inc., New York,

1968. MR0248482 (40:1734)
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