Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus
Authors:
Jean Bourgain, Alex Furman, Elon Lindenstrauss and Shahar Mozes
Journal:
J. Amer. Math. Soc. 24 (2011), 231-280
MSC (2010):
Primary 11B75, 37A17; Secondary 37A45, 11L07, 20G30
DOI:
https://doi.org/10.1090/S0894-0347-2010-00674-1
Published electronically:
June 29, 2010
MathSciNet review:
2726604
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let $\nu$ be a probability measure on $\mathrm {SL}_d(\mathbb {Z})$ satisfying the moment condition $\mathbb {E}_\nu (\|g\|^\epsilon )<\infty$ for some $\epsilon$. We show that if the group generated by the support of $\nu$ is large enough, in particular if this group is Zariski dense in $\mathrm {SL}_d$, for any irrational $x \in \mathbb {T}^d$ the probability measures $\nu ^{* n} * \delta _x$ tend to the uniform measure on $\mathbb {T}^d$. If in addition $x$ is Diophantine generic, we show this convergence is exponentially fast.
- Daniel Berend, Multi-invariant sets on compact abelian groups, Trans. Amer. Math. Soc. 286 (1984), no. 2, 505–535. MR 760973, DOI https://doi.org/10.1090/S0002-9947-1984-0760973-X
- Yves Benoist and Jean-François Quint, Mesures stationnaires et fermés invariants des espaces homogènes, C. R. Math. Acad. Sci. Paris 347 (2009), no. 1-2, 9–13 (French, with English and French summaries). MR 2536741, DOI https://doi.org/10.1016/j.crma.2008.11.001
- Philippe Bougerol and Jean Lacroix, Products of random matrices with applications to Schrödinger operators, Progress in Probability and Statistics, vol. 8, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 886674
- J. Bourgain, On the Erdős-Volkmann and Katz-Tao ring conjectures, Geom. Funct. Anal. 13 (2003), no. 2, 334–365. MR 1982147, DOI https://doi.org/10.1007/s000390300008
- J. Bourgain, The discretized sum product and projection theorems (2009).
- Jean Bourgain, Alex Furman, Elon Lindenstrauss, and Shahar Mozes, Invariant measures and stiffness for non-abelian groups of toral automorphisms, C. R. Math. Acad. Sci. Paris 344 (2007), no. 12, 737–742 (English, with English and French summaries). MR 2340439, DOI https://doi.org/10.1016/j.crma.2007.04.017
- Jean Bourgain and Alex Gamburd, On the spectral gap for finitely-generated subgroups of $\rm SU(2)$, Invent. Math. 171 (2008), no. 1, 83–121. MR 2358056, DOI https://doi.org/10.1007/s00222-007-0072-z
- Jean Bourgain, Alex Gamburd, and Peter Sarnak, Sieving and expanders, C. R. Math. Acad. Sci. Paris 343 (2006), no. 3, 155–159 (English, with English and French summaries). MR 2246331, DOI https://doi.org/10.1016/j.crma.2006.05.023
- M. Burger, Kazhdan constants for ${\rm SL}(3,{\bf Z})$, J. Reine Angew. Math. 413 (1991), 36–67. MR 1089795, DOI https://doi.org/10.1515/crll.1991.413.36
- Manfred Einsiedler and Elon Lindenstrauss, Rigidity properties of $\Bbb Z^d$-actions on tori and solenoids, Electron. Res. Announc. Amer. Math. Soc. 9 (2003), 99–110. MR 2029471, DOI https://doi.org/10.1090/S1079-6762-03-00117-3
- Harry Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1–49. MR 213508, DOI https://doi.org/10.1007/BF01692494
- Hillel Furstenberg, Stiffness of group actions, Lie groups and ergodic theory (Mumbai, 1996) Tata Inst. Fund. Res. Stud. Math., vol. 14, Tata Inst. Fund. Res., Bombay, 1998, pp. 105–117. MR 1699360
- K. J. Falconer, Hausdorff dimension and the exceptional set of projections, Mathematika 29 (1982), no. 1, 109–115. MR 673510, DOI https://doi.org/10.1112/S0025579300012201
- Harry Furstenberg, Noncommuting random products, Trans. Amer. Math. Soc. 108 (1963), 377–428. MR 163345, DOI https://doi.org/10.1090/S0002-9947-1963-0163345-0
- H. Furstenberg and Y. Kifer, Random matrix products and measures on projective spaces, Israel J. Math. 46 (1983), no. 1-2, 12–32. MR 727020, DOI https://doi.org/10.1007/BF02760620
- I. Ya. Gol′dsheĭd and G. A. Margulis, Lyapunov exponents of a product of random matrices, Uspekhi Mat. Nauk 44 (1989), no. 5(269), 13–60 (Russian); English transl., Russian Math. Surveys 44 (1989), no. 5, 11–71. MR 1040268, DOI https://doi.org/10.1070/RM1989v044n05ABEH002214
- Y. Guivarc’h and A. Raugi, Products of random matrices: convergence theorems, Random matrices and their applications (Brunswick, Maine, 1984) Contemp. Math., vol. 50, Amer. Math. Soc., Providence, RI, 1986, pp. 31–54. MR 841080, DOI https://doi.org/10.1090/conm/050/841080
- Yves Guivarc’h and Albert Raugi, Propriétés de contraction d’un semi-groupe de matrices inversibles. Coefficients de Liapunoff d’un produit de matrices aléatoires indépendantes, Israel J. Math. 65 (1989), no. 2, 165–196 (French, with English summary). MR 998669, DOI https://doi.org/10.1007/BF02764859
- Y. Guivarc’h and A. N. Starkov, Orbits of linear group actions, random walks on homogeneous spaces and toral automorphisms, Ergodic Theory Dynam. Systems 24 (2004), no. 3, 767–802. MR 2060998, DOI https://doi.org/10.1017/S0143385703000440
- Boris Kalinin and Anatole Katok, Invariant measures for actions of higher rank abelian groups, Smooth ergodic theory and its applications (Seattle, WA, 1999) Proc. Sympos. Pure Math., vol. 69, Amer. Math. Soc., Providence, RI, 2001, pp. 593–637. MR 1858547, DOI https://doi.org/10.1090/pspum/069/1858547
- A. Katok and R. J. Spatzier, Invariant measures for higher-rank hyperbolic abelian actions, Ergodic Theory Dynam. Systems 16 (1996), no. 4, 751–778. MR 1406432, DOI https://doi.org/10.1017/S0143385700009081
- Nets Hawk Katz and Terence Tao, Some connections between Falconer’s distance set conjecture and sets of Furstenburg type, New York J. Math. 7 (2001), 149–187. MR 1856956
- Yitzhak Katznelson, An introduction to harmonic analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0248482
- Émile Le Page, Théorèmes limites pour les produits de matrices aléatoires, Probability measures on groups (Oberwolfach, 1981) Lecture Notes in Math., vol. 928, Springer, Berlin-New York, 1982, pp. 258–303 (French). MR 669072
- Gregory Margulis, Problems and conjectures in rigidity theory, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 161–174. MR 1754775
- Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890
- Roman Muchnik, Semigroup actions on $\Bbb T^n$, Geom. Dedicata 110 (2005), 1–47. MR 2136018, DOI https://doi.org/10.1007/s10711-004-4321-7
- Yuval Peres and Wilhelm Schlag, Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions, Duke Math. J. 102 (2000), no. 2, 193–251. MR 1749437, DOI https://doi.org/10.1215/S0012-7094-00-10222-0
- Marina Ratner, Interactions between ergodic theory, Lie groups, and number theory, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 157–182. MR 1403920
- Daniel J. Rudolph, $\times 2$ and $\times 3$ invariant measures and entropy, Ergodic Theory Dynam. Systems 10 (1990), no. 2, 395–406. MR 1062766, DOI https://doi.org/10.1017/S0143385700005629
Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 11B75, 37A17, 37A45, 11L07, 20G30
Retrieve articles in all journals with MSC (2010): 11B75, 37A17, 37A45, 11L07, 20G30
Additional Information
Jean Bourgain
Affiliation:
School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540
MR Author ID:
40280
Alex Furman
Affiliation:
Department of Mathematics, University of Illinois at Chicago, 51 S Morgan Street, MSCS (m/c 249), Illinois 60607
Elon Lindenstrauss
Affiliation:
Department of Mathematics, Princeton University, Princeton, New Jersey 08544, and Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel
MR Author ID:
605709
Shahar Mozes
Affiliation:
Department of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel
MR Author ID:
264125
Received by editor(s):
November 18, 2009
Received by editor(s) in revised form:
March 18, 2010
Published electronically:
June 29, 2010
Additional Notes:
The first author was supported in part by NSF grants DMS-0808042 and DMS-0835373
The second author was supported in part by NSF grants DMS-0604611 and DMS-0905977.
The third author was supported in part by NSF grants DMS-0554345 and DMS-0800345.
The fourth author was supported in part by BSF and ISF
Article copyright:
© Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.