Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus
HTML articles powered by AMS MathViewer
- by Jean Bourgain, Alex Furman, Elon Lindenstrauss and Shahar Mozes;
- J. Amer. Math. Soc. 24 (2011), 231-280
- DOI: https://doi.org/10.1090/S0894-0347-2010-00674-1
- Published electronically: June 29, 2010
- PDF | Request permission
Abstract:
Let $\nu$ be a probability measure on $\mathrm {SL}_d(\mathbb {Z})$ satisfying the moment condition $\mathbb {E}_\nu (\|g\|^\epsilon )<\infty$ for some $\epsilon$. We show that if the group generated by the support of $\nu$ is large enough, in particular if this group is Zariski dense in $\mathrm {SL}_d$, for any irrational $x \in \mathbb {T}^d$ the probability measures $\nu ^{* n} * \delta _x$ tend to the uniform measure on $\mathbb {T}^d$. If in addition $x$ is Diophantine generic, we show this convergence is exponentially fast.References
- Daniel Berend, Multi-invariant sets on compact abelian groups, Trans. Amer. Math. Soc. 286 (1984), no. 2, 505–535. MR 760973, DOI 10.1090/S0002-9947-1984-0760973-X
- Yves Benoist and Jean-François Quint, Mesures stationnaires et fermés invariants des espaces homogènes, C. R. Math. Acad. Sci. Paris 347 (2009), no. 1-2, 9–13 (French, with English and French summaries). MR 2536741, DOI 10.1016/j.crma.2008.11.001
- Philippe Bougerol and Jean Lacroix, Products of random matrices with applications to Schrödinger operators, Progress in Probability and Statistics, vol. 8, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 886674, DOI 10.1007/978-1-4684-9172-2
- J. Bourgain, On the Erdős-Volkmann and Katz-Tao ring conjectures, Geom. Funct. Anal. 13 (2003), no. 2, 334–365. MR 1982147, DOI 10.1007/s000390300008
- J. Bourgain, The discretized sum product and projection theorems (2009).
- Jean Bourgain, Alex Furman, Elon Lindenstrauss, and Shahar Mozes, Invariant measures and stiffness for non-abelian groups of toral automorphisms, C. R. Math. Acad. Sci. Paris 344 (2007), no. 12, 737–742 (English, with English and French summaries). MR 2340439, DOI 10.1016/j.crma.2007.04.017
- Jean Bourgain and Alex Gamburd, On the spectral gap for finitely-generated subgroups of $\rm SU(2)$, Invent. Math. 171 (2008), no. 1, 83–121. MR 2358056, DOI 10.1007/s00222-007-0072-z
- Jean Bourgain, Alex Gamburd, and Peter Sarnak, Sieving and expanders, C. R. Math. Acad. Sci. Paris 343 (2006), no. 3, 155–159 (English, with English and French summaries). MR 2246331, DOI 10.1016/j.crma.2006.05.023
- M. Burger, Kazhdan constants for $\textrm {SL}(3,\textbf {Z})$, J. Reine Angew. Math. 413 (1991), 36–67. MR 1089795, DOI 10.1515/crll.1991.413.36
- Manfred Einsiedler and Elon Lindenstrauss, Rigidity properties of $\Bbb Z^d$-actions on tori and solenoids, Electron. Res. Announc. Amer. Math. Soc. 9 (2003), 99–110. MR 2029471, DOI 10.1090/S1079-6762-03-00117-3
- Harry Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1–49. MR 213508, DOI 10.1007/BF01692494
- Hillel Furstenberg, Stiffness of group actions, Lie groups and ergodic theory (Mumbai, 1996) Tata Inst. Fund. Res. Stud. Math., vol. 14, Tata Inst. Fund. Res., Bombay, 1998, pp. 105–117. MR 1699360
- K. J. Falconer, Hausdorff dimension and the exceptional set of projections, Mathematika 29 (1982), no. 1, 109–115. MR 673510, DOI 10.1112/S0025579300012201
- Harry Furstenberg, Noncommuting random products, Trans. Amer. Math. Soc. 108 (1963), 377–428. MR 163345, DOI 10.1090/S0002-9947-1963-0163345-0
- H. Furstenberg and Y. Kifer, Random matrix products and measures on projective spaces, Israel J. Math. 46 (1983), no. 1-2, 12–32. MR 727020, DOI 10.1007/BF02760620
- I. Ya. Gol′dsheĭd and G. A. Margulis, Lyapunov exponents of a product of random matrices, Uspekhi Mat. Nauk 44 (1989), no. 5(269), 13–60 (Russian); English transl., Russian Math. Surveys 44 (1989), no. 5, 11–71. MR 1040268, DOI 10.1070/RM1989v044n05ABEH002214
- Y. Guivarc’h and A. Raugi, Products of random matrices: convergence theorems, Random matrices and their applications (Brunswick, Maine, 1984) Contemp. Math., vol. 50, Amer. Math. Soc., Providence, RI, 1986, pp. 31–54. MR 841080, DOI 10.1090/conm/050/841080
- Yves Guivarc’h and Albert Raugi, Propriétés de contraction d’un semi-groupe de matrices inversibles. Coefficients de Liapunoff d’un produit de matrices aléatoires indépendantes, Israel J. Math. 65 (1989), no. 2, 165–196 (French, with English summary). MR 998669, DOI 10.1007/BF02764859
- Y. Guivarc’h and A. N. Starkov, Orbits of linear group actions, random walks on homogeneous spaces and toral automorphisms, Ergodic Theory Dynam. Systems 24 (2004), no. 3, 767–802. MR 2060998, DOI 10.1017/S0143385703000440
- Boris Kalinin and Anatole Katok, Invariant measures for actions of higher rank abelian groups, Smooth ergodic theory and its applications (Seattle, WA, 1999) Proc. Sympos. Pure Math., vol. 69, Amer. Math. Soc., Providence, RI, 2001, pp. 593–637. MR 1858547, DOI 10.1090/pspum/069/1858547
- A. Katok and R. J. Spatzier, Invariant measures for higher-rank hyperbolic abelian actions, Ergodic Theory Dynam. Systems 16 (1996), no. 4, 751–778. MR 1406432, DOI 10.1017/S0143385700009081
- Nets Hawk Katz and Terence Tao, Some connections between Falconer’s distance set conjecture and sets of Furstenburg type, New York J. Math. 7 (2001), 149–187. MR 1856956
- Yitzhak Katznelson, An introduction to harmonic analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 248482
- Émile Le Page, Théorèmes limites pour les produits de matrices aléatoires, Probability measures on groups (Oberwolfach, 1981) Lecture Notes in Math., vol. 928, Springer, Berlin-New York, 1982, pp. 258–303 (French). MR 669072
- Gregory Margulis, Problems and conjectures in rigidity theory, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 161–174. MR 1754775
- Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890, DOI 10.1017/CBO9780511623813
- Roman Muchnik, Semigroup actions on $\Bbb T^n$, Geom. Dedicata 110 (2005), 1–47. MR 2136018, DOI 10.1007/s10711-004-4321-7
- Yuval Peres and Wilhelm Schlag, Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions, Duke Math. J. 102 (2000), no. 2, 193–251. MR 1749437, DOI 10.1215/S0012-7094-00-10222-0
- Marina Ratner, Interactions between ergodic theory, Lie groups, and number theory, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 157–182. MR 1403920
- Daniel J. Rudolph, $\times 2$ and $\times 3$ invariant measures and entropy, Ergodic Theory Dynam. Systems 10 (1990), no. 2, 395–406. MR 1062766, DOI 10.1017/S0143385700005629
Bibliographic Information
- Jean Bourgain
- Affiliation: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540
- MR Author ID: 40280
- Alex Furman
- Affiliation: Department of Mathematics, University of Illinois at Chicago, 51 S Morgan Street, MSCS (m/c 249), Illinois 60607
- Elon Lindenstrauss
- Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544, and Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel
- MR Author ID: 605709
- Shahar Mozes
- Affiliation: Department of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel
- MR Author ID: 264125
- Received by editor(s): November 18, 2009
- Received by editor(s) in revised form: March 18, 2010
- Published electronically: June 29, 2010
- Additional Notes: The first author was supported in part by NSF grants DMS-0808042 and DMS-0835373
The second author was supported in part by NSF grants DMS-0604611 and DMS-0905977.
The third author was supported in part by NSF grants DMS-0554345 and DMS-0800345.
The fourth author was supported in part by BSF and ISF - © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 24 (2011), 231-280
- MSC (2010): Primary 11B75, 37A17; Secondary 37A45, 11L07, 20G30
- DOI: https://doi.org/10.1090/S0894-0347-2010-00674-1
- MathSciNet review: 2726604