On the Solvability Complexity Index, the $n$-pseudospectrum and approximations of spectra of operators
HTML articles powered by AMS MathViewer
- by Anders C. Hansen PDF
- J. Amer. Math. Soc. 24 (2011), 81-124 Request permission
Abstract:
We show that it is possible to compute spectra and pseudospectra of linear operators on separable Hilbert spaces given their matrix elements. The core in the theory is pseudospectral analysis and in particular the $n$-pseudospectrum and the residual pseudospectrum. We also introduce a new classification tool for spectral problems, namely, the Solvability Complexity Index. This index is an indicator of the âdifficultnessâ of different computational spectral problems.References
- William Arveson, Discretized CCR algebras, J. Operator Theory 26 (1991), no. 2, 225â239. MR 1225515
- William Arveson, Improper filtrations for $C^*$-algebras: spectra of unilateral tridiagonal operators, Acta Sci. Math. (Szeged) 57 (1993), no. 1-4, 11â24. MR 1243265
- William Arveson, $C^*$-algebras and numerical linear algebra, J. Funct. Anal. 122 (1994), no. 2, 333â360. MR 1276162, DOI 10.1006/jfan.1994.1072
- William Arveson, The role of $C^\ast$-algebras in infinite-dimensional numerical linear algebra, $C^\ast$-algebras: 1943â1993 (San Antonio, TX, 1993) Contemp. Math., vol. 167, Amer. Math. Soc., Providence, RI, 1994, pp. 114â129. MR 1292012, DOI 10.1090/conm/167/1292012
- Erik BĂ©dos, On filtrations for $C^*$-algebras, Houston J. Math. 20 (1994), no. 1, 63â74. MR 1272561
- Erik BĂ©dos, On FĂžlner nets, SzegĆâs theorem and other eigenvalue distribution theorems, Exposition. Math. 15 (1997), no. 3, 193â228. MR 1458766
- Carl M. Bender, Properties of non-Hermitian quantum field theories, Proceedings of the International Conference in Honor of FrĂ©dĂ©ric Pham (Nice, 2002), 2003, pp. 997â1008 (English, with English and French summaries). MR 2033507, DOI 10.5802/aif.1971
- Carl M. Bender, Making sense of non-Hermitian Hamiltonians, Rep. Progr. Phys. 70 (2007), no. 6, 947â1018. MR 2331294, DOI 10.1088/0034-4885/70/6/R03
- Albrecht Böttcher, Pseudospectra and singular values of large convolution operators, J. Integral Equations Appl. 6 (1994), no. 3, 267â301. MR 1312518, DOI 10.1216/jiea/1181075815
- Albrecht Böttcher, $C^*$-algebras in numerical analysis, Irish Math. Soc. Bull. 45 (2000), 57â133. MR 1832325
- A. Böttcher, A. V. Chithra, and M. N. N. Namboodiri, Approximation of approximation numbers by truncation, Integral Equations Operator Theory 39 (2001), no. 4, 387â395. MR 1829276, DOI 10.1007/BF01203320
- Albrecht Böttcher and Sergei M. Grudsky, Spectral properties of banded Toeplitz matrices, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005. MR 2179973, DOI 10.1137/1.9780898717853
- Albrecht Böttcher and Bernd Silbermann, Analysis of Toeplitz operators, 2nd ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2006. Prepared jointly with Alexei Karlovich. MR 2223704
- Lyonell Boulton, Projection methods for discrete Schrödinger operators, Proc. London Math. Soc. (3) 88 (2004), no. 2, 526â544. MR 2032518, DOI 10.1112/S0024611503014448
- Lyonell Boulton, Limiting set of second order spectra, Math. Comp. 75 (2006), no. 255, 1367â1382. MR 2219033, DOI 10.1090/S0025-5718-06-01830-8
- B. M. Brown and M. Marletta, Spectral inclusion and spectral exactness for singular non-self-adjoint Hamiltonian systems, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459 (2003), no. 2036, 1987â2009. MR 1993665, DOI 10.1098/rspa.2002.1106
- L. G. Brown, LidskiÄâs theorem in the type $\textrm {II}$ case, Geometric methods in operator algebras (Kyoto, 1983) Pitman Res. Notes Math. Ser., vol. 123, Longman Sci. Tech., Harlow, 1986, pp. 1â35. MR 866489
- Nathanial P. Brown, AF embeddings and the numerical computation of spectra in irrational rotation algebras, Numer. Funct. Anal. Optim. 27 (2006), no. 5-6, 517â528. MR 2246575, DOI 10.1080/01630560600790785
- Nathanial P. Brown, Quasi-diagonality and the finite section method, Math. Comp. 76 (2007), no. 257, 339â360. MR 2261025, DOI 10.1090/S0025-5718-06-01893-X
- H. O. Cordes and J. P. Labrousse, The invariance of the index in the metric space of closed operators, J. Math. Mech. 12 (1963), 693â719. MR 0162142, DOI 10.1017/s0022112062000440
- E. B. Davies, Semi-classical states for non-self-adjoint Schrödinger operators, Comm. Math. Phys. 200 (1999), no. 1, 35â41. MR 1671904, DOI 10.1007/s002200050521
- E. B. Davies, Spectral properties of random non-self-adjoint matrices and operators, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), no. 2005, 191â206. MR 1843941, DOI 10.1098/rspa.2000.0662
- E. B. Davies, Non-self-adjoint differential operators, Bull. London Math. Soc. 34 (2002), no. 5, 513â532. MR 1912874, DOI 10.1112/S0024609302001248
- E. B. Davies and A. B. J. Kuijlaars, Spectral asymptotics of the non-self-adjoint harmonic oscillator, J. London Math. Soc. (2) 70 (2004), no. 2, 420â426. MR 2078902, DOI 10.1112/S0024610704005381
- E. B. Davies and M. Plum, Spectral pollution, IMA J. Numer. Anal. 24 (2004), no. 3, 417â438. MR 2068830, DOI 10.1093/imanum/24.3.417
- P. Deift, L. C. Li, and C. Tomei, Toda flows with infinitely many variables, J. Funct. Anal. 64 (1985), no. 3, 358â402. MR 813206, DOI 10.1016/0022-1236(85)90065-5
- Nils Dencker, Johannes Sjöstrand, and Maciej Zworski, Pseudospectra of semiclassical (pseudo-) differential operators, Comm. Pure Appl. Math. 57 (2004), no. 3, 384â415. MR 2020109, DOI 10.1002/cpa.20004
- Trond Digernes, V. S. Varadarajan, and S. R. S. Varadhan, Finite approximations to quantum systems, Rev. Math. Phys. 6 (1994), no. 4, 621â648. MR 1290691, DOI 10.1142/S0129055X94000213
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
- Bent Fuglede and Richard V. Kadison, Determinant theory in finite factors, Ann. of Math. (2) 55 (1952), 520â530. MR 52696, DOI 10.2307/1969645
- Uffe Haagerup and Hanne Schultz, Brown measures of unbounded operators affiliated with a finite von Neumann algebra, Math. Scand. 100 (2007), no. 2, 209â263. MR 2339369, DOI 10.7146/math.scand.a-15023
- Roland Hagen, Steffen Roch, and Bernd Silbermann, $C^*$-algebras and numerical analysis, Monographs and Textbooks in Pure and Applied Mathematics, vol. 236, Marcel Dekker, Inc., New York, 2001. MR 1792428
- Anders C. Hansen, On the approximation of spectra of linear operators on Hilbert spaces, J. Funct. Anal. 254 (2008), no. 8, 2092â2126. MR 2402104, DOI 10.1016/j.jfa.2008.01.006
- â, Infinite-dimensional numerical linear algebra: theory and applications, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science (2010).
- N. Hatano and D. R. Nelson, Localization transitions in non-Hermitian quantum mechanics, Phys. Rev. Lett. 77 (1996), no. 3, 570â573.
- â, Vortex pinning and non-Hermitian quantum mechanics, Phys. Rev. B 56 (1997), no. 14, 8651â8673.
- W. K. Hayman and P. B. Kennedy, Subharmonic functions. Vol. I, London Mathematical Society Monographs, No. 9, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. MR 0460672
- Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452, DOI 10.1007/978-3-642-66282-9
- Michael Levitin and Eugene Shargorodsky, Spectral pollution and second-order relative spectra for self-adjoint operators, IMA J. Numer. Anal. 24 (2004), no. 3, 393â416. MR 2068829, DOI 10.1093/imanum/24.3.393
- Marco Marletta, Roman Shterenberg, and Rudi Weikard, On the inverse resonance problem for Schrödinger operators, Comm. Math. Phys. 295 (2010), no. 2, 465â484. MR 2594334, DOI 10.1007/s00220-009-0928-8
- O. Nevanlinna, Computing the spectrum and representing the resolvent, Numer. Funct. Anal. Optim. 30 (2009), no. 9-10, 1025â1047. MR 2589763, DOI 10.1080/01630560903393162
- Eugene Shargorodsky, Geometry of higher order relative spectra and projection methods, J. Operator Theory 44 (2000), no. 1, 43â62. MR 1774693
- E. Shargorodsky, On the level sets of the resolvent norm of a linear operator, Bull. Lond. Math. Soc. 40 (2008), no. 3, 493â504. MR 2418805, DOI 10.1112/blms/bdn038
- Michael Shub and Steve Smale, Complexity of BĂ©zoutâs theorem. I. Geometric aspects, J. Amer. Math. Soc. 6 (1993), no. 2, 459â501. MR 1175980, DOI 10.1090/S0894-0347-1993-1175980-4
- Steve Smale, The fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 1, 1â36. MR 590817, DOI 10.1090/S0273-0979-1981-14858-8
- Steve Smale, Complexity theory and numerical analysis, Acta numerica, 1997, Acta Numer., vol. 6, Cambridge Univ. Press, Cambridge, 1997, pp. 523â551. MR 1489262, DOI 10.1017/S0962492900002774
- G. SzegĆ, BeitrĂ€ge zur Theorie der Toeplitzschen Formen, Math. Z. 6 (1920), no. 3-4, 167â202 (German). MR 1544404, DOI 10.1007/BF01199955
- Lloyd N. Trefethen, Computation of pseudospectra, Acta numerica, 1999, Acta Numer., vol. 8, Cambridge Univ. Press, Cambridge, 1999, pp. 247â295. MR 1819647, DOI 10.1017/S0962492900002932
- Lloyd N. Trefethen and S. J. Chapman, Wave packet pseudomodes of twisted Toeplitz matrices, Comm. Pure Appl. Math. 57 (2004), no. 9, 1233â1264. MR 2059680, DOI 10.1002/cpa.20034
- Lloyd N. Trefethen and Mark Embree, Spectra and pseudospectra, Princeton University Press, Princeton, NJ, 2005. The behavior of nonnormal matrices and operators. MR 2155029, DOI 10.1515/9780691213101
- Sergei Treil, An operator Corona theorem, Indiana Univ. Math. J. 53 (2004), no. 6, 1763â1780. MR 2106344, DOI 10.1512/iumj.2004.53.2640
- Maciej Zworski, Resonances in physics and geometry, Notices Amer. Math. Soc. 46 (1999), no. 3, 319â328. MR 1668841
Additional Information
- Anders C. Hansen
- Affiliation: Department of Applied and Computational Mathematics, California Institute of Technology, Pasadena, California 91125
- Address at time of publication: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Email: A.Hansen@damtp.cam.ac.uk
- Received by editor(s): August 28, 2009
- Published electronically: July 12, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 24 (2011), 81-124
- MSC (2010): Primary 47A10; Secondary 47A75, 46L05, 81Q10, 81Q12, 65J10
- DOI: https://doi.org/10.1090/S0894-0347-2010-00676-5
- MathSciNet review: 2726600