Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2024 MCQ for Journal of the American Mathematical Society is 4.83.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Hecke fields of analytic families of modular forms
HTML articles powered by AMS MathViewer

by Haruzo Hida;
J. Amer. Math. Soc. 24 (2011), 51-80
DOI: https://doi.org/10.1090/S0894-0347-2010-00680-7
Published electronically: September 8, 2010

Abstract:

We make finiteness conjectures on the composite of Hecke fields of classical members of a $p$-adic analytic family of slope 0 elliptic modular forms in the vertical case (with fixed level varying weight). In the horizontal case (fixed weight varying $p$-power level), we prove the corresponding statements.
References
  • David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Published for the Tata Institute of Fundamental Research, Bombay; by Hindustan Book Agency, New Delhi, 2008. With appendices by C. P. Ramanujam and Yuri Manin; Corrected reprint of the second (1974) edition. MR 2514037
  • Goro Shimura, Abelian varieties with complex multiplication and modular functions, Princeton Mathematical Series, vol. 46, Princeton University Press, Princeton, NJ, 1998. MR 1492449, DOI 10.1515/9781400883943
  • Nicholas M. Katz and Barry Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, vol. 108, Princeton University Press, Princeton, NJ, 1985. MR 772569, DOI 10.1515/9781400881710
  • N. Bourbaki, Éléments de mathématique. I: Les structures fondamentales de l’analyse. Fascicule XI. Livre II: Algèbre. Chapitre 4: Polynomes et fractions rationnelles. Chapitre 5: Corps commutatifs, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1102, Hermann, Paris, 1959 (French). Deuxième édition. MR 174550
  • Henri Carayol, Sur les représentations $l$-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 409–468 (French). MR 870690, DOI 10.24033/asens.1512
  • Ching-Li Chai, Every ordinary symplectic isogeny class in positive characteristic is dense in the moduli, Invent. Math. 121 (1995), no. 3, 439–479. MR 1353306, DOI 10.1007/BF01884309
  • Ching-Li Chai, A rigidity result for $p$-divisible formal groups, Asian J. Math. 12 (2008), no. 2, 193–202. MR 2439259, DOI 10.4310/AJM.2008.v12.n2.a3
  • C.-L. Chai, Families of ordinary abelian varieties: canonical coordinates, $p$-adic monodromy, Tate-linear subvarieties and Hecke orbits, preprint 2003 (available at: www.math.upenn.edu/˜chai).
  • P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 349, Springer, Berlin-New York, 1973, pp. 143–316 (French). MR 337993
  • Eknath Ghate and Vinayak Vatsal, On the local behaviour of ordinary $\Lambda$-adic representations, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 7, 2143–2162 (2005) (English, with English and French summaries). MR 2139691, DOI 10.5802/aif.2077
  • Haruzo Hida, Geometric modular forms and elliptic curves, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. MR 1794402, DOI 10.1142/9789812792693
  • Haruzo Hida, Iwasawa modules attached to congruences of cusp forms, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 2, 231–273. MR 868300, DOI 10.24033/asens.1507
  • Haruzo Hida, Galois representations into $\textrm {GL}_2(\textbf {Z}_p[[X]])$ attached to ordinary cusp forms, Invent. Math. 85 (1986), no. 3, 545–613. MR 848685, DOI 10.1007/BF01390329
  • Haruzo Hida, Hecke algebras for $\textrm {GL}_1$ and $\textrm {GL}_2$, Séminaire de théorie des nombres, Paris 1984–85, Progr. Math., vol. 63, Birkhäuser Boston, Boston, MA, 1986, pp. 131–163. MR 897346
  • Haruzo Hida, On $p$-adic Hecke algebras for $\textrm {GL}_2$ over totally real fields, Ann. of Math. (2) 128 (1988), no. 2, 295–384. MR 960949, DOI 10.2307/1971444
  • Haruzo Hida, Adjoint Selmer groups as Iwasawa modules. part B, Proceedings of the Conference on $p$-adic Aspects of the Theory of Automorphic Representations (Jerusalem, 1998), 2000, pp. 361–427. MR 1809628, DOI 10.1007/BF02834845
  • H. Hida, The Iwasawa $\mu$–invariant of $p$–adic Hecke $L$–functions, Ann. of Math. (2) 172 (2010), 41–137.
  • Haruzo Hida and Yoshitaka Maeda, Non-abelian base change for totally real fields, Pacific J. Math. Special Issue (1997), 189–217. Olga Taussky-Todd: in memoriam. MR 1610859, DOI 10.2140/pjm.1997.181.189
  • Haruzo Hida, Hilbert modular forms and Iwasawa theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2006. MR 2243770, DOI 10.1093/acprof:oso/9780198571025.001.0001
  • Taira Honda, Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Japan 20 (1968), 83–95. MR 229642, DOI 10.2969/jmsj/02010083
  • Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, No. 1, Iwanami Shoten Publishers, Tokyo; Princeton University Press, Princeton, NJ, 1971. Publications of the Mathematical Society of Japan, No. 11. MR 314766
  • Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
  • N. Katz, Serre-Tate local moduli, Algebraic surfaces (Orsay, 1976–78) Lecture Notes in Math., vol. 868, Springer, Berlin, 1981, pp. 138–202. MR 638600
  • R. P. Langlands, Modular forms and $\ell$-adic representations, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 349, Springer, Berlin-New York, 1973, pp. 361–500. MR 354617
  • J. H. Loxton, On two problems of R. W. Robinson about sums of roots of unity, Acta Arith. 26 (1974/75), 159–174. MR 371852, DOI 10.4064/aa-26-2-159-174
  • B. Mazur, Deforming Galois representations, Galois groups over $\textbf {Q}$ (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 16, Springer, New York, 1989, pp. 385–437. MR 1012172, DOI 10.1007/978-1-4613-9649-9_{7}
  • Haruzo Hida, Modular forms and Galois cohomology, Cambridge Studies in Advanced Mathematics, vol. 69, Cambridge University Press, Cambridge, 2000. MR 1779182, DOI 10.1017/CBO9780511526046
  • Toshitsune Miyake, Modular forms, Springer-Verlag, Berlin, 1989. Translated from the Japanese by Yoshitaka Maeda. MR 1021004, DOI 10.1007/3-540-29593-3
  • B. Mazur and A. Wiles, On $p$-adic analytic families of Galois representations, Compositio Math. 59 (1986), no. 2, 231–264. MR 860140
  • S. Bosch, U. Güntzer, and R. Remmert, Non-Archimedean analysis, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261, Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic geometry. MR 746961, DOI 10.1007/978-3-642-52229-1
  • Kenneth A. Ribet, On $l$-adic representations attached to modular forms. II, Glasgow Math. J. 27 (1985), 185–194. MR 819838, DOI 10.1017/S0017089500006170
  • A. J. Scholl, Motives for modular forms, Invent. Math. 100 (1990), no. 2, 419–430. MR 1047142, DOI 10.1007/BF01231194
Similar Articles
Bibliographic Information
  • Haruzo Hida
  • Affiliation: Department of Mathematics, University of California, Los Angeles, Los Angeles, California 90095-1555
  • MR Author ID: 213427
  • Email: hida@math.ucla.edu
  • Received by editor(s): June 19, 2009
  • Received by editor(s) in revised form: February 8, 2010, and April 29, 2010
  • Published electronically: September 8, 2010
  • Additional Notes: The author is partially supported by the NSF grant: DMS 0753991 and DMS 0854949, and part of this work was done during the author’s stay in January to March 2010 at the Institut Henri Poincaré - Centre Emile Borel. The author thanks this institution for its hospitality and support.
  • © Copyright 2010 American Mathematical Society
  • Journal: J. Amer. Math. Soc. 24 (2011), 51-80
  • MSC (2010): Primary 11E16, 11F11, 11F25, 11F27, 11F30, 11F33, 11F80
  • DOI: https://doi.org/10.1090/S0894-0347-2010-00680-7
  • MathSciNet review: 2726599