The Nitsche conjecture
HTML articles powered by AMS MathViewer
- by Tadeusz Iwaniec, Leonid V. Kovalev and Jani Onninen;
- J. Amer. Math. Soc. 24 (2011), 345-373
- DOI: https://doi.org/10.1090/S0894-0347-2010-00685-6
- Published electronically: November 10, 2010
- PDF | Request permission
Abstract:
The Nitsche conjecture is deeply rooted in the theory of doubly-connected minimal surfaces. However, it is commonly formulated in slightly greater generality as a question of existence of a harmonic homeomorphism between circular annuli \[ h \colon \mathbb A = A(r,R) \overset {\text {onto}}{\longrightarrow } A(r_\ast , R_\ast ) =\mathbb A^*. \] In the early 1960s, while attempting to describe all doubly-connected minimal graphs over a given annulus $\mathbb A^*$, J. C. C. Nitsche observed that their conformal modulus cannot be too large. Then he conjectured, in terms of isothermal coordinates, even more:
A harmonic homeomorphism $h\colon \mathbb {A} \overset {\text {onto}}{\longrightarrow } \mathbb {A}^\ast$ exists if and only if \[ \frac {R_\ast }{r_\ast } \geqslant \frac {1}{2} \left (\frac {R}{r}+ \frac {r}{R}\right ). \]
In the present paper we provide, among further generalizations, an affirmative answer to his conjecture.
References
- K. Astala, T. Iwaniec, and G. Martin, Deformations of annuli with smallest mean distortion, Arch. Ration. Mech. Anal. 195 (2010), no. 3, 899–921. MR 2591976, DOI 10.1007/s00205-009-0231-z
- Kari Astala, Tadeusz Iwaniec, and Gaven Martin, Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton Mathematical Series, vol. 48, Princeton University Press, Princeton, NJ, 2009. MR 2472875
- Paul M. Bailyn, Doubly-connected minimal surfaces, Trans. Amer. Math. Soc. 128 (1967), 206–220. MR 211333, DOI 10.1090/S0002-9947-1967-0211333-1
- Daoud Bshouty and Walter Hengartner, Univalent harmonic mappings in the plane, Ann. Univ. Mariae Curie-Skłodowska Sect. A 48 (1994), 12–42. Workshop on Complex Analysis (Lublin, 1994). MR 1346560
- D. Bshouty ; W. Hengartner, Problems and conjectures for harmonic mappings, Notes from a workshop held at the Technion, Haifa, May 1995.
- R. B. Burckel and P. Poggi-Corradini, Some remarks about analytic functions defined on an annulus, unpublished.
- Ulrich Dierkes, Stefan Hildebrandt, Albrecht Küster, and Ortwin Wohlrab, Minimal surfaces. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 295, Springer-Verlag, Berlin, 1992. Boundary value problems. MR 1215267
- Ulrich Dierkes, Stefan Hildebrandt, Albrecht Küster, and Ortwin Wohlrab, Minimal surfaces. II, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 296, Springer-Verlag, Berlin, 1992. Boundary regularity. MR 1215268
- Peter L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR 708494
- Peter Duren, Harmonic mappings in the plane, Cambridge Tracts in Mathematics, vol. 156, Cambridge University Press, Cambridge, 2004. MR 2048384, DOI 10.1017/CBO9780511546600
- J. Eells and B. Fuglede, Harmonic maps between Riemannian polyhedra, Cambridge Tracts in Mathematics, vol. 142, Cambridge University Press, Cambridge, 2001. With a preface by M. Gromov. MR 1848068
- W. Hengartner and G. Schober, Univalent harmonic functions, Trans. Amer. Math. Soc. 299 (1987), no. 1, 1–31. MR 869396, DOI 10.1090/S0002-9947-1987-0869396-9
- Stefan Hildebrandt, Maximum principles for minimal surfaces and for surfaces of continuous mean curvature, Math. Z. 128 (1972), 253–269. MR 312406, DOI 10.1007/BF01111709
- S. Hildebrandt, J. Jost, and K.-O. Widman, Harmonic mappings and minimal submanifolds, Invent. Math. 62 (1980/81), no. 2, 269–298. MR 595589, DOI 10.1007/BF01389161
- Stéfan Hildebrandt, Helmut Kaul, and Kjell-Ove Widman, An existence theorem for harmonic mappings of Riemannian manifolds, Acta Math. 138 (1977), no. 1-2, 1–16. MR 433502, DOI 10.1007/BF02392311
- T. Iwaniec, L. V. Kovalev, and J. Onninen, Harmonic mappings of an annulus, Nitsche conjecture and its generalizations, Amer. J. Math. 132 (2010), no. 5, 1397–1428.
- T. Iwaniec, L. V. Kovalev, and J. Onninen, Doubly connected minimal surfaces and extremal harmonic mappings, arXiv:0912.3542.
- T. Iwaniec, L. V. Kovalev, and J. Onninen, Harmonic mapping problem and affine capacity, arXiv:1001.2124.
- T. Iwaniec and J. Onninen, $n$-Harmonic mappings between annuli, preprint.
- Jürgen Jost, Harmonic maps between surfaces, Lecture Notes in Mathematics, vol. 1062, Springer-Verlag, Berlin, 1984. MR 754769, DOI 10.1007/BFb0100160
- David Kalaj, On the Nitsche conjecture for harmonic mappings in ${\Bbb R}^2$ and ${\Bbb R}^3$, Israel J. Math. 150 (2005), 241–251. MR 2255810, DOI 10.1007/BF02762382
- Helmut Kaul, Remarks on the isoperimetric inequality for multiply-connected $H$-surfaces, Math. Z. 128 (1972), 271–276. MR 312407, DOI 10.1007/BF01111710
- N.-T. Koh and L. V. Kovalev, Area contraction for harmonic automorphisms of the disk, Bull. London Math. Soc., to appear.
- Abdallah Lyzzaik, Univalent harmonic mappings and a conjecture of J. C. C. Nitsche, Ann. Univ. Mariae Curie-Skłodowska Sect. A 53 (1999), 147–150. XII-th Conference on Analytic Functions (Lublin, 1998). MR 1778824
- Abdallah Lyzzaik, The modulus of the image annuli under univalent harmonic mappings and a conjecture of Nitsche, J. London Math. Soc. (2) 64 (2001), no. 2, 369–384. MR 1853457, DOI 10.1112/S0024610701002460
- Abdallah Lyzzaik, Univalent harmonic mappings of annuli, Publ. Inst. Math. (Beograd) (N.S.) 75(89) (2004), 173–183. MR 2108005, DOI 10.2298/PIM0475173L
- Zeev Nehari, Conformal mapping, Dover Publications, Inc., New York, 1975. Reprinting of the 1952 edition. MR 377031
- Johannes C. C. Nitsche, Mathematical Notes: On the Module of Doubly-Connected Regions Under Harmonic Mappings, Amer. Math. Monthly 69 (1962), no. 8, 781–782. MR 1531840, DOI 10.2307/2310779
- Johannes C. C. Nitsche, A necessary criterion for the existence of certain minimal surfaces, J. Math. Mech. 13 (1964), 659–666. MR 162191
- Johannes C. C. Nitsche, The isoperimetric inequality for multiply-connected minimal surfaces, Math. Ann. 160 (1965), 370–375. MR 185523, DOI 10.1007/BF01360908
- Johannes C. C. Nitsche, Note on the nonexistence of minimal surfaces, Proc. Amer. Math. Soc. 19 (1968), 1303–1305. MR 234365, DOI 10.1090/S0002-9939-1968-0234365-2
- Johannes C. C. Nitsche, Vorlesungen über Minimalflächen, Die Grundlehren der mathematischen Wissenschaften, Band 199, Springer-Verlag, Berlin-New York, 1975 (German). MR 448224
- Johannes C. C. Nitsche and J. Leavitt, Numerical estimates for minimal surfaces, Math. Ann. 180 (1969), 170–174. MR 257897, DOI 10.1007/BF01350745
- Robert Osserman, A survey of minimal surfaces, Van Nostrand Reinhold Co., New York-London-Melbourne, 1969. MR 256278
- Robert Osserman, Isoperimetric and related inequalitites, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 1, Stanford Univ., Stanford, Calif., 1973) Proc. Sympos. Pure Math., Vol. XXVII, Part 1, Amer. Math. Soc., Providence, RI, 1975, pp. 207–215. MR 385686
- R. Osserman and M. Schiffer, Doubly-connected minimal surfaces, Arch. Rational Mech. Anal. 58 (1975), no. 4, 285–307. MR 385687, DOI 10.1007/BF00250292
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7
- Glenn Schober, Planar harmonic mappings, Computational methods and function theory (Valparaíso, 1989) Lecture Notes in Math., vol. 1435, Springer, Berlin, 1990, pp. 171–176. MR 1071771, DOI 10.1007/BFb0087906
- F. H. Schottky, Über konforme Abbildung von mehrfach zusammenhängenden Fläche. J. für Math., 83 (1877), 300–351.
- Allen Weitsman, Univalent harmonic mappings of annuli and a conjecture of J. C. C. Nitsche, Israel J. Math. 124 (2001), 327–331. MR 1856525, DOI 10.1007/BF02772628
Bibliographic Information
- Tadeusz Iwaniec
- Affiliation: Department of Mathematics, Syracuse University, Syracuse, New York 13244 and Department of Mathematics and Statistics, University of Helsinki, Finland
- Email: tiwaniec@syr.edu
- Leonid V. Kovalev
- Affiliation: Department of Mathematics, Syracuse University, Syracuse, New York 13244
- MR Author ID: 641917
- Email: lvkovale@syr.edu
- Jani Onninen
- Affiliation: Department of Mathematics, Syracuse University, Syracuse, New York 13244
- MR Author ID: 679509
- Email: jkonnine@syr.edu
- Received by editor(s): November 3, 2009
- Received by editor(s) in revised form: August 23, 2010
- Published electronically: November 10, 2010
- Additional Notes: The first author was supported by the NSF grant DMS-0800416 and the Academy of Finland grant 1128331.
The second author was supported by the NSF grant DMS-0913474.
The third author was supported by the NSF grant DMS-0701059. - © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 24 (2011), 345-373
- MSC (2010): Primary 31A05; Secondary 58E20, 30C20
- DOI: https://doi.org/10.1090/S0894-0347-2010-00685-6
- MathSciNet review: 2748396