The Sato-Tate conjecture for Hilbert modular forms
HTML articles powered by AMS MathViewer
- by Thomas Barnet-Lamb, Toby Gee and David Geraghty;
- J. Amer. Math. Soc. 24 (2011), 411-469
- DOI: https://doi.org/10.1090/S0894-0347-2010-00689-3
- Published electronically: December 28, 2010
- PDF | Request permission
Abstract:
We prove the Sato-Tate conjecture for Hilbert modular forms. More precisely, we prove the natural generalisation of the Sato-Tate conjecture for regular algebraic cuspidal automorphic representations of $\operatorname {GL}_2(\mathbb {A}_F)$, $F$ a totally real field, which are not of CM type. The argument is based on the potential automorphy techniques developed by Taylor et al., but makes use of automorphy lifting theorems over ramified fields, together with a “topological” argument with local deformation rings. In particular, we give a new proof of the conjecture for modular forms, which does not make use of potential automorphy theorems for non-ordinary $n$-dimensional Galois representations.References
- James Arthur and Laurent Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Annals of Mathematics Studies, vol. 120, Princeton University Press, Princeton, NJ, 1989. MR 1007299
- Emil Artin and John Tate, Class field theory, AMS Chelsea Publishing, Providence, RI, 2009. Reprinted with corrections from the 1967 original. MR 2467155, DOI 10.1090/chel/366
- Laurent Berger, Représentations modulaires de $\textrm {GL}_2(\mathbf Q_p)$ et représentations galoisiennes de dimension 2, Astérisque 330 (2010), 263–279 (French, with English and French summaries). MR 2642408
- Don Blasius, Hilbert modular forms and the Ramanujan conjecture, Noncommutative geometry and number theory, Aspects Math., E37, Friedr. Vieweg, Wiesbaden, 2006, pp. 35–56. MR 2327298, DOI 10.1007/978-3-8348-0352-8_{2}
- Tom Barnet-Lamb, Toby Gee, David Geraghty, and Richard Taylor, Potential automorphy and change of weight, preprint available at http://www. math.northwestern.edu/~gee/, 2010.
- Tom Barnet-Lamb, David Geraghty, Michael Harris, and Richard Taylor, A family of Calabi-Yau varieties and potential automorphy II, Preprint, 2009.
- A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, 2nd ed., Mathematical Surveys and Monographs, vol. 67, American Mathematical Society, Providence, RI, 2000. MR 1721403, DOI 10.1090/surv/067
- Brian Conrad, Fred Diamond, and Richard Taylor, Modularity of certain potentially Barsotti-Tate Galois representations, J. Amer. Math. Soc. 12 (1999), no. 2, 521–567. MR 1639612, DOI 10.1090/S0894-0347-99-00287-8
- Laurent Clozel, Michael Harris, and Richard Taylor, Automorphy for some $l$-adic lifts of automorphic mod $l$ Galois representations, Publ. Math. Inst. Hautes Études Sci. 108 (2008), 1–181. With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras. MR 2470687, DOI 10.1007/s10240-008-0016-1
- Laurent Clozel, Changement de base pour les représentations tempérées des groupes réductifs réels, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 1, 45–115 (French). MR 672475
- Mladen Dimitrov, Galois representations modulo $p$ and cohomology of Hilbert modular varieties, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 4, 505–551 (English, with English and French summaries). MR 2172950, DOI 10.1016/j.ansens.2005.03.005
- P. Deligne, D. Kazhdan, and M.-F. Vignéras, Représentations des algèbres centrales simples $p$-adiques, Representations of reductive groups over a local field, Travaux en Cours, Hermann, Paris, 1984, pp. 33–117 (French). MR 771672
- Toby Gee, A modularity lifting theorem for weight two Hilbert modular forms, Math. Res. Lett. 13 (2006), no. 5-6, 805–811. MR 2280776, DOI 10.4310/MRL.2006.v13.n5.a10
- Toby Gee, The Sato-Tate conjecture for modular forms of weight 3, Doc. Math. 14 (2009), 771–800. MR 2578803
- —, Automorphic lifts of prescribed types, to appear Math. Annalen, available at http://www.math.northwestern.edu/~gee/, 2010.
- David Geraghty, Modularity lifting theorems for ordinary Galois representations, preprint, 2009.
- Toby Gee and David Geraghty, Companion forms for unitary and symplectic groups, Preprint, 2009.
- L. Guerberoff, Modularity lifting theorems for Galois representations of unitary type, Arxiv preprint arXiv:0906.4189 (2009).
- Michael Harris, Potential automorphy of odd-dimensional symmetric powers of elliptic curves and applications, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, Progr. Math., vol. 270, Birkhäuser Boston, Boston, MA, 2009, pp. 1–21. MR 2641185, DOI 10.1007/978-0-8176-4747-6_{1}
- Michael Harris, Nick Shepherd-Barron, and Richard Taylor, A family of Calabi-Yau varieties and potential automorphy, Ann. of Math. (2) 171 (2010), no. 2, 779–813. MR 2630056, DOI 10.4007/annals.2010.171.779
- Michael Harris and Richard Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001. With an appendix by Vladimir G. Berkovich. MR 1876802
- Mark Kisin, Modularity of 2-dimensional Galois representations, Current developments in mathematics, 2005, Int. Press, Somerville, MA, 2007, pp. 191–230. MR 2459302
- Mark Kisin, Potentially semi-stable deformation rings, J. Amer. Math. Soc. 21 (2008), no. 2, 513–546. MR 2373358, DOI 10.1090/S0894-0347-07-00576-0
- —, Moduli of finite flat group schemes, and modularity, Annals of Math. (2) 170 (2009), no. 3, 1085–1180.
- Jean-Pierre Labesse, Changement de base CM et séries discrètes, preprint, 2009.
- R. P. Langlands, On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 101–170. MR 1011897, DOI 10.1090/surv/031/03
- David Savitt, On a conjecture of Conrad, Diamond, and Taylor, Duke Math. J. 128 (2005), no. 1, 141–197. MR 2137952, DOI 10.1215/S0012-7094-04-12816-7
- Jean-Pierre Serre, Abelian $l$-adic representations and elliptic curves, W. A. Benjamin, Inc., New York-Amsterdam, 1968. McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute. MR 263823
- Jean-Pierre Serre, Sur la semi-simplicité des produits tensoriels de représentations de groupes, Invent. Math. 116 (1994), no. 1-3, 513–530 (French). MR 1253203, DOI 10.1007/BF01231571
- Richard Taylor, On the meromorphic continuation of degree two $L$-functions, Doc. Math. Extra Vol. (2006), 729–779. MR 2290604
- Richard Taylor, Automorphy for some $l$-adic lifts of automorphic mod $l$ Galois representations. II, Publ. Math. Inst. Hautes Études Sci. 108 (2008), 183–239. MR 2470688, DOI 10.1007/s10240-008-0015-2
- Richard Taylor and Teruyoshi Yoshida, Compatibility of local and global Langlands correspondences, J. Amer. Math. Soc. 20 (2007), no. 2, 467–493. MR 2276777, DOI 10.1090/S0894-0347-06-00542-X
- A. V. Zelevinsky, Induced representations of reductive ${\mathfrak {p}}$-adic groups. II. On irreducible representations of $\textrm {GL}(n)$, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165–210. MR 584084
Bibliographic Information
- Thomas Barnet-Lamb
- Affiliation: Department of Mathematics, Brandeis University, 415 South Street MS 050, Waltham, Massachusetts 02138
- Email: tbl@brandeis.edu
- Toby Gee
- Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
- Address at time of publication: Department of Mathematics, Northwestern University, 2033 Sheridan Road Evanston, Ilinois 60208-2730
- Email: tgee@math.harvard.edu, gee@math.northwestern.edu
- David Geraghty
- Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
- Address at time of publication: Princeton University and Institute for Advanced Study, Princeton, New Jersey 08540
- Email: geraghty@math.harvard.edu, geraghty@math.ias.edu
- Received by editor(s): December 17, 2009
- Received by editor(s) in revised form: November 4, 2010
- Published electronically: December 28, 2010
- Additional Notes: The second author was partially supported by NSF grant DMS-0841491.
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 24 (2011), 411-469
- MSC (2010): Primary 11F33
- DOI: https://doi.org/10.1090/S0894-0347-2010-00689-3
- MathSciNet review: 2748398