Apollonian circle packings and closed horospheres on hyperbolic $3$-manifolds
HTML articles powered by AMS MathViewer
- by Alex Kontorovich and Hee Oh; with appendix by Hee Oh and Nimish Shah
- J. Amer. Math. Soc. 24 (2011), 603-648
- DOI: https://doi.org/10.1090/S0894-0347-2011-00691-7
- Published electronically: January 19, 2011
- PDF | Request permission
Abstract:
We show that for a given bounded Apollonian circle packing $\mathcal P$, there exists a constant $c>0$ such that the number of circles of curvature at most $T$ is asymptotic to $c\cdot T^\alpha$ as $T\to \infty$. Here $\alpha \approx 1.30568(8)$ is the residual dimension of the packing. For $\mathcal P$ integral, let $\pi ^{\mathcal {P}}(T)$ denote the number of circles with prime curvature less than $T$. Similarly let $\pi _2^{\mathcal {P}}(T)$ be the number of pairs of tangent circles with prime curvatures less than $T$. We obtain the upper bounds $\pi ^{\mathcal {P}}(T)\ll T^\alpha /\log T$ and $\pi _2^{\mathcal {P}}(T)\ll T^\alpha /(\log T)^2$, which are sharp up to a constant multiple. The main ingredient of our proof is the effective equidistribution of expanding closed horospheres in the unit tangent bundle of a geometrically finite hyperbolic $3$-manifold $\Gamma \backslash \mathbb {H}^3$ under the assumption that the critical exponent of $\Gamma$ exceeds one.References
- Thierry Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252, Springer-Verlag, New York, 1982. MR 681859, DOI 10.1007/978-1-4612-5734-9
- Alan F. Beardon and Bernard Maskit, Limit points of Kleinian groups and finite sided fundamental polyhedra, Acta Math. 132 (1974), 1–12. MR 333164, DOI 10.1007/BF02392106
- A. I. Borevich and I. R. Shafarevich, Number theory, Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. Translated from the Russian by Newcomb Greenleaf. MR 195803
- Jean Bourgain, Alex Gamburd, and Peter Sarnak, Affine linear sieve, expanders, and sum-product, Invent. Math. 179 (2010), no. 3, 559–644. MR 2587341, DOI 10.1007/s00222-009-0225-3
- Jean Bourgain, Alex Gamburd, and Peter Sarnak. Generalization of Selberg’s theorem and Selberg’s sieve, 2009. Preprint.
- David W. Boyd, The sequence of radii of the Apollonian packing, Math. Comp. 39 (1982), no. 159, 249–254. MR 658230, DOI 10.1090/S0025-5718-1982-0658230-7
- Marc Burger, Horocycle flow on geometrically finite surfaces, Duke Math. J. 61 (1990), no. 3, 779–803. MR 1084459, DOI 10.1215/S0012-7094-90-06129-0
- Kevin Corlette and Alessandra Iozzi, Limit sets of discrete groups of isometries of exotic hyperbolic spaces, Trans. Amer. Math. Soc. 351 (1999), no. 4, 1507–1530. MR 1458321, DOI 10.1090/S0002-9947-99-02113-3
- H. S. M. Coxeter, The problem of Apollonius, Amer. Math. Monthly 75 (1968), 5–15. MR 230204, DOI 10.2307/2315097
- Françoise Dal’bo, Topologie du feuilletage fortement stable, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 3, 981–993 (French, with English and French summaries). MR 1779902, DOI 10.5802/aif.1781
- S. G. Dani, Invariant measures and minimal sets of horospherical flows, Invent. Math. 64 (1981), no. 2, 357–385. MR 629475, DOI 10.1007/BF01389173
- Alex Eskin and Curt McMullen, Mixing, counting, and equidistribution in Lie groups, Duke Math. J. 71 (1993), no. 1, 181–209. MR 1230290, DOI 10.1215/S0012-7094-93-07108-6
- E. Fuchs. Ph.D. Thesis, Princeton University, 2010.
- Ramesh Gangolli and V. S. Varadarajan, Harmonic analysis of spherical functions on real reductive groups, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 101, Springer-Verlag, Berlin, 1988. MR 954385, DOI 10.1007/978-3-642-72956-0
- Ronald L. Graham, Jeffrey C. Lagarias, Colin L. Mallows, Allan R. Wilks, and Catherine H. Yan, Apollonian circle packings: number theory, J. Number Theory 100 (2003), no. 1, 1–45. MR 1971245, DOI 10.1016/S0022-314X(03)00015-5
- Ronald L. Graham, Jeffrey C. Lagarias, Colin L. Mallows, Allan R. Wilks, and Catherine H. Yan, Apollonian circle packings: geometry and group theory. I. The Apollonian group, Discrete Comput. Geom. 34 (2005), no. 4, 547–585. MR 2173929, DOI 10.1007/s00454-005-1196-9
- Y. Guivarc’h and A. Raugi, Products of random matrices: convergence theorems, Random matrices and their applications (Brunswick, Maine, 1984) Contemp. Math., vol. 50, Amer. Math. Soc., Providence, RI, 1986, pp. 31–54. MR 841080, DOI 10.1090/conm/050/841080
- K. E. Hirst, The Apollonian packing of circles, J. London Math. Soc. 42 (1967), 281–291. MR 209981, DOI 10.1112/jlms/s1-42.1.281
- Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214, DOI 10.1090/coll/053
- Michael Kapovich, Hyperbolic manifolds and discrete groups, Progress in Mathematics, vol. 183, Birkhäuser Boston, Inc., Boston, MA, 2001. MR 1792613
- Alex V. Kontorovich, The hyperbolic lattice point count in infinite volume with applications to sieves, Duke Math. J. 149 (2009), no. 1, 1–36. MR 2541126, DOI 10.1215/00127094-2009-035
- Alex Kontorovich and Hee Oh. Almost prime Pythagorean triples in thin orbits. Preprint, 2009, arXiv:1001.0370.
- Serge Lang, Algebra, 3rd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR 1878556, DOI 10.1007/978-1-4613-0041-0
- Peter D. Lax and Ralph S. Phillips, The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces, J. Functional Analysis 46 (1982), no. 3, 280–350. MR 661875, DOI 10.1016/0022-1236(82)90050-7
- Grigoriy A. Margulis, On some aspects of the theory of Anosov systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004. With a survey by Richard Sharp: Periodic orbits of hyperbolic flows; Translated from the Russian by Valentina Vladimirovna Szulikowska. MR 2035655, DOI 10.1007/978-3-662-09070-1
- Bernard Maskit, Kleinian groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 287, Springer-Verlag, Berlin, 1988. MR 959135
- C. R. Matthews, L. N. Vaserstein, and B. Weisfeiler, Congruence properties of Zariski-dense subgroups. I, Proc. London Math. Soc. (3) 48 (1984), no. 3, 514–532. MR 735226, DOI 10.1112/plms/s3-48.3.514
- François Maucourant, Homogeneous asymptotic limits of Haar measures of semisimple linear groups and their lattices, Duke Math. J. 136 (2007), no. 2, 357–399. MR 2286635, DOI 10.1215/S0012-7094-07-13626-3
- Curtis T. McMullen, Hausdorff dimension and conformal dynamics. III. Computation of dimension, Amer. J. Math. 120 (1998), no. 4, 691–721. MR 1637951, DOI 10.1353/ajm.1998.0031
- Amir Mohammadi and Alireza Salehi Golsefidy. Translates of horospherical measures and counting problems. Preprint, 2008.
- Hee Oh. Dynamics on Geometrically finite hyperbolic manifolds with applications to Apollonian circle packings and beyond. Proc. of ICM (Hyderabad, 2010).
- Hee Oh and Nimish Shah. Equidistribution and counting for orbits of geometrically finite hyperbolic groups. Preprint, arXiv:1001.2096.
- Hee Oh and Nimish Shah. The asymptotic distribution of circles in the orbits of Kleinian groups. Preprint, arXiv:1004.2130.
- S. J. Patterson, The limit set of a Fuchsian group, Acta Math. 136 (1976), no. 3-4, 241–273. MR 450547, DOI 10.1007/BF02392046
- Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139, Academic Press, Inc., Boston, MA, 1994. Translated from the 1991 Russian original by Rachel Rowen. MR 1278263
- Marina Ratner, On Raghunathan’s measure conjecture, Ann. of Math. (2) 134 (1991), no. 3, 545–607. MR 1135878, DOI 10.2307/2944357
- Marina Ratner, Raghunathan’s topological conjecture and distributions of unipotent flows, Duke Math. J. 63 (1991), no. 1, 235–280. MR 1106945, DOI 10.1215/S0012-7094-91-06311-8
- Thomas Roblin, Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr. (N.S.) 95 (2003), vi+96 (French, with English and French summaries). MR 2057305, DOI 10.24033/msmf.408
- Peter Sarnak, Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series, Comm. Pure Appl. Math. 34 (1981), no. 6, 719–739. MR 634284, DOI 10.1002/cpa.3160340602
- Peter Sarnak. Letter to J. Lagarias, 2007. available at www.math.princeton.edu/$\sim$sarnak.
- Barbara Schapira, Equidistribution of the horocycles of a geometrically finite surface, Int. Math. Res. Not. 40 (2005), 2447–2471. MR 2180113, DOI 10.1155/IMRN.2005.2447
- Yehuda Shalom, Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group, Ann. of Math. (2) 152 (2000), no. 1, 113–182. MR 1792293, DOI 10.2307/2661380
- F. Soddy. The bowl of integers and the hexlet. Nature, 139:77–79, 1936.
- F. Soddy. The kiss precise. Nature, 137:1021, 1937.
- Dennis Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 171–202. MR 556586, DOI 10.1007/BF02684773
- Dennis Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984), no. 3-4, 259–277. MR 766265, DOI 10.1007/BF02392379
- William Thurston. The Geometry and Topology of Three-Manifolds. available at www.msri.org/publications/books. Electronic version-March 2002.
- J. B. Wilker, Sizing up a solid packing, Period. Math. Hungar. 8 (1977), no. 2, 117–134. MR 641055, DOI 10.1007/BF02018498
Bibliographic Information
- Alex Kontorovich
- Affiliation: Department of Mathematics, Brown University, Providence, Rhode Island 02912
- Address at time of publication: Department of Mathematics, Stony Brook University, Stony Brook, New York 11794-3651
- MR Author ID: 704943
- ORCID: 0000-0001-7626-8319
- Email: alexk@math.brown.edu, alexk@math.sunysb.edu
- Hee Oh
- MR Author ID: 615083
- Hee Oh
- Affiliation: Department of Mathematics, Brown University, Providence, Rhode Island 02912 and Department of Mathematics, Korea Institute for Advanced Study, Seoul, Korea
- Email: heeoh@math.brown.edu
- Nimish Shah
- Affiliation: Department of Mathematics, The Ohio State University, Columbus, Ohio 43210
- Email: shah@math.ohio-state.edu
- Received by editor(s): January 20, 2009
- Received by editor(s) in revised form: November 18, 2009, and December 10, 2010
- Published electronically: January 19, 2011
- Additional Notes: The first author is supported by an NSF Postdoc, grant DMS 0802998.
The second author is partially supported by NSF grant DMS 0629322. - © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 24 (2011), 603-648
- MSC (2010): Primary 22E40
- DOI: https://doi.org/10.1090/S0894-0347-2011-00691-7
- MathSciNet review: 2784325