Mass equidistribution for automorphic forms of cohomological type on $GL_2$
HTML articles powered by AMS MathViewer
- by Simon Marshall;
- J. Amer. Math. Soc. 24 (2011), 1051-1103
- DOI: https://doi.org/10.1090/S0894-0347-2011-00700-5
- Published electronically: April 6, 2011
- PDF | Request permission
Erratum: J. Amer. Math. Soc. 25 (2012), 615-616.
Abstract:
We extend Holowinsky and Soundararajan’s proof of quantum unique ergodicity for holomorphic Hecke modular forms on $SL(2,\mathbb {Z})$, by establishing it for automorphic forms of cohomological type on $GL_2$ over an arbitrary number field which satisfy the Ramanujan bounds. In particular, we have unconditional theorems over totally real and imaginary quadratic fields. In the totally real case we show that our result implies the equidistribution of the zero divisors of holomorphic Hecke modular forms, generalising a result of Rudnick over $\mathbb {Q}$.References
- A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, 2nd ed., Mathematical Surveys and Monographs, vol. 67, American Mathematical Society, Providence, RI, 2000. MR 1721403, DOI 10.1090/surv/067
- Tobias Berger and Gergely Harcos, $l$-adic representations associated to modular forms over imaginary quadratic fields, Int. Math. Res. Not. IMRN 23 (2007), Art. ID rnm113, 16. MR 2380006
- Don Blasius, Hilbert modular forms and the Ramanujan conjecture, Noncommutative geometry and number theory, Aspects Math., E37, Friedr. Vieweg, Wiesbaden, 2006, pp. 35–56. MR 2327298, DOI 10.1007/978-3-8348-0352-8_{2}
- Valentin Blomer and Gergely Harcos, Twisted $L$-functions over number fields and Hilbert’s eleventh problem, Geom. Funct. Anal. 20 (2010), no. 1, 1–52. MR 2647133, DOI 10.1007/s00039-010-0063-x
- Isaac Y. Efrat, The Selberg trace formula for $\textrm {PSL}_2(\textbf {R})^n$, Mem. Amer. Math. Soc. 65 (1987), no. 359, iv+111. MR 874084, DOI 10.1090/memo/0359
- P. D. T. A. Elliott, C. J. Moreno, and F. Shahidi, On the absolute value of Ramanujan’s $\tau$-function, Math. Ann. 266 (1984), no. 4, 507–511. MR 735531, DOI 10.1007/BF01458543
- Tobias Finis, Fritz Grunewald, and Paulo Tirao, The cohomology of lattices in $\textrm {SL}(2,\Bbb C)$, Experiment. Math. 19 (2010), no. 1, 29–63. MR 2649984, DOI 10.1080/10586458.2010.10129067
- Paul B. Garrett, Decomposition of Eisenstein series: Rankin triple products, Ann. of Math. (2) 125 (1987), no. 2, 209–235. MR 881269, DOI 10.2307/1971310
- Stephen Gelbart and Hervé Jacquet, A relation between automorphic representations of $\textrm {GL}(2)$ and $\textrm {GL}(3)$, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 471–542. MR 533066, DOI 10.24033/asens.1355
- Jeffrey Hoffstein and Paul Lockhart, Coefficients of Maass forms and the Siegel zero, Ann. of Math. (2) 140 (1994), no. 1, 161–181. With an appendix by Dorian Goldfeld, Hoffstein and Daniel Lieman. MR 1289494, DOI 10.2307/2118543
- I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 6th ed., Academic Press, Inc., San Diego, CA, 2000. Translated from the Russian; Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger. MR 1773820
- Michael Harris, David Soudry, and Richard Taylor, $l$-adic representations associated to modular forms over imaginary quadratic fields. I. Lifting to $\textrm {GSp}_4(\textbf {Q})$, Invent. Math. 112 (1993), no. 2, 377–411. MR 1213108, DOI 10.1007/BF01232440
- Jeffrey Hoffstein and Paul Lockhart, Coefficients of Maass forms and the Siegel zero, Ann. of Math. (2) 140 (1994), no. 1, 161–181. With an appendix by Dorian Goldfeld, Hoffstein and Daniel Lieman. MR 1289494, DOI 10.2307/2118543
- Roman Holowinsky, A sieve method for shifted convolution sums, Duke Math. J. 146 (2009), no. 3, 401–448. MR 2484279, DOI 10.1215/00127094-2009-002
- Roman Holowinsky, Sieving for mass equidistribution, Ann. of Math. (2) 172 (2010), no. 2, 1499–1516. MR 2680498, DOI 10.4007/annals.2010.172.1499
- Roman Holowinsky and Kannan Soundararajan, Mass equidistribution for Hecke eigenforms, Ann. of Math. (2) 172 (2010), no. 2, 1517–1528. MR 2680499, DOI 10.4007/annals.2010.172.1517
- Atsushi Ichino, Trilinear forms and the central values of triple product $L$-functions, Duke Math. J. 145 (2008), no. 2, 281–307. MR 2449948, DOI 10.1215/00127094-2008-052
- Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214, DOI 10.1090/coll/053
- H. Jacquet and R. P. Langlands, Automorphic forms on $\textrm {GL}(2)$, Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. MR 401654, DOI 10.1007/BFb0058988
- Elon Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity, Ann. of Math. (2) 163 (2006), no. 1, 165–219. MR 2195133, DOI 10.4007/annals.2006.163.165
- Elon Lindenstrauss, On quantum unique ergodicity for $\Gamma \backslash \Bbb H\times \Bbb H$, Internat. Math. Res. Notices 17 (2001), 913–933. MR 1859345, DOI 10.1155/S1073792801000459
- Sheng-Chi Liu, Equidistribution of Hecke eigenforms on the Hilbert modular varieties, J. Number Theory 127 (2007), no. 1, 1–9. MR 2351660, DOI 10.1016/j.jnt.2007.01.006
- Wenzhi Luo and Peter Sarnak, Mass equidistribution for Hecke eigenforms, Comm. Pure Appl. Math. 56 (2003), no. 7, 874–891. Dedicated to the memory of Jürgen K. Moser. MR 1990480, DOI 10.1002/cpa.10078
- S. Marshall, Quantum chaos and triple product identities on $SL(2,\mathbb {C})$, preprint, available as arXiv.org:math/:1006.3303v1.
- Philippe Michel and Akshay Venkatesh, The subconvexity problem for $\textrm {GL}_2$, Publ. Math. Inst. Hautes Études Sci. 111 (2010), 171–271. MR 2653249, DOI 10.1007/s10240-010-0025-8
- Hugh L. Montgomery and Robert C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, vol. 97, Cambridge University Press, Cambridge, 2007. MR 2378655
- Mohan Nair, Multiplicative functions of polynomial values in short intervals, Acta Arith. 62 (1992), no. 3, 257–269. MR 1197420, DOI 10.4064/aa-62-3-257-269
- Mohan Nair and Gérald Tenenbaum, Short sums of certain arithmetic functions, Acta Math. 180 (1998), no. 1, 119–144. MR 1618321, DOI 10.1007/BF02392880
- P. Nelson, Mass equidistribution of Hilbert modular eigenforms, preprint, available as arxiv.org:1011.1291v1.
- S. Nonnenmacher and A. Voros, Chaotic eigenfunctions in phase space, J. Statist. Phys. 92 (1998), no. 3-4, 431–518. MR 1649013, DOI 10.1023/A:1023080303171
- Zeév Rudnick, On the asymptotic distribution of zeros of modular forms, Int. Math. Res. Not. 34 (2005), 2059–2074. MR 2181743, DOI 10.1155/IMRN.2005.2059
- Zeév Rudnick and Peter Sarnak, The behaviour of eigenstates of arithmetic hyperbolic manifolds, Comm. Math. Phys. 161 (1994), no. 1, 195–213. MR 1266075, DOI 10.1007/BF02099418
- P. Sarnak, The arithmetic and geometry of some hyperbolic three-manifolds, Acta Math. 151 (1983), no. 3-4, 253–295. MR 723012, DOI 10.1007/BF02393209
- Peter Sarnak, Estimates for Rankin-Selberg $L$-functions and quantum unique ergodicity, J. Funct. Anal. 184 (2001), no. 2, 419–453. MR 1851004, DOI 10.1006/jfan.2001.3783
- Bernard Shiffman and Steve Zelditch, Distribution of zeros of random and quantum chaotic sections of positive line bundles, Comm. Math. Phys. 200 (1999), no. 3, 661–683. MR 1675133, DOI 10.1007/s002200050544
- Hideo Shimizu, On discontinuous groups operating on the product of the upper half planes, Ann. of Math. (2) 77 (1963), 33–71. MR 145106, DOI 10.2307/1970201
- Lior Silberman and Akshay Venkatesh, On quantum unique ergodicity for locally symmetric spaces, Geom. Funct. Anal. 17 (2007), no. 3, 960–998. MR 2346281, DOI 10.1007/s00039-007-0611-1
- A. I. Šnirel′man, Ergodic properties of eigenfunctions, Uspehi Mat. Nauk 29 (1974), no. 6(180), 181–182 (Russian). MR 402834
- Kannan Soundararajan, Weak subconvexity for central values of $L$-functions, Ann. of Math. (2) 172 (2010), no. 2, 1469–1498. MR 2680497, DOI 10.4007/annals.2010.172.1469
- Kannan Soundararajan, Quantum unique ergodicity for $\textrm {SL}_2(\Bbb Z)\backslash \Bbb H$, Ann. of Math. (2) 172 (2010), no. 2, 1529–1538. MR 2680500, DOI 10.4007/annals.2010.172.1529
- Thomas Crawford Watson, Rankin triple products and quantum chaos, ProQuest LLC, Ann Arbor, MI, 2002. Thesis (Ph.D.)–Princeton University. MR 2703041
- Steven Zelditch, Pseudodifferential analysis on hyperbolic surfaces, J. Funct. Anal. 68 (1986), no. 1, 72–105. MR 850155, DOI 10.1016/0022-1236(86)90058-3
- Steven Zelditch, The averaging method and ergodic theory for pseudo-differential operators on compact hyperbolic surfaces, J. Funct. Anal. 82 (1989), no. 1, 38–68. MR 976312, DOI 10.1016/0022-1236(89)90091-8
Bibliographic Information
- Simon Marshall
- Affiliation: School of Mathematics, The Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540
- Email: slm@math.princeton.edu
- Received by editor(s): July 1, 2010
- Received by editor(s) in revised form: December 10, 2010, and February 22, 2011
- Published electronically: April 6, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 24 (2011), 1051-1103
- MSC (2010): Primary 11F41, 11F11; Secondary 11F75
- DOI: https://doi.org/10.1090/S0894-0347-2011-00700-5
- MathSciNet review: 2813338