Hall algebras and curve-counting invariants
HTML articles powered by AMS MathViewer
- by Tom Bridgeland;
- J. Amer. Math. Soc. 24 (2011), 969-998
- DOI: https://doi.org/10.1090/S0894-0347-2011-00701-7
- Published electronically: April 6, 2011
- PDF | Request permission
Abstract:
We use Joyce’s theory of motivic Hall algebras to prove that reduced Donaldson-Thomas curve-counting invariants on Calabi-Yau threefolds coincide with stable pair invariants and that the generating functions for these invariants are Laurent expansions of rational functions.References
- Kai Behrend, Donaldson-Thomas type invariants via microlocal geometry, Ann. of Math. (2) 170 (2009), no. 3, 1307–1338. MR 2600874, DOI 10.4007/annals.2009.170.1307
- Kai Behrend and Barbara Fantechi, Symmetric obstruction theories and Hilbert schemes of points on threefolds, Algebra Number Theory 2 (2008), no. 3, 313–345. MR 2407118, DOI 10.2140/ant.2008.2.313
- T. Bridgeland, An introduction to motivic Hall algebras, preprint arXiv 1002.4372.
- Tom Bridgeland and Antony Maciocia, Fourier-Mukai transforms for $K3$ and elliptic fibrations, J. Algebraic Geom. 11 (2002), no. 4, 629–657. MR 1910263, DOI 10.1090/S1056-3911-02-00317-X
- Johannes Engel and Markus Reineke, Smooth models of quiver moduli, Math. Z. 262 (2009), no. 4, 817–848. MR 2511752, DOI 10.1007/s00209-008-0401-y
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
- Alexander Grothendieck, Techniques de construction et théorèmes d’existence en géométrie algébrique. IV. Les schémas de Hilbert, Séminaire Bourbaki, Vol. 6, Soc. Math. France, Paris, 1995, pp. Exp. No. 221, 249–276 (French). MR 1611822
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 255. MR 217086
- Dieter Happel, Idun Reiten, and Sverre O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575, viii+ 88. MR 1327209, DOI 10.1090/memo/0575
- Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997. MR 1450870, DOI 10.1007/978-3-663-11624-0
- Dominic Joyce, Motivic invariants of Artin stacks and ‘stack functions’, Q. J. Math. 58 (2007), no. 3, 345–392. MR 2354923, DOI 10.1093/qmath/ham019
- Dominic Joyce, Configurations in abelian categories. I. Basic properties and moduli stacks, Adv. Math. 203 (2006), no. 1, 194–255. MR 2231046, DOI 10.1016/j.aim.2005.04.008
- Dominic Joyce, Configurations in abelian categories. II. Ringel-Hall algebras, Adv. Math. 210 (2007), no. 2, 635–706. MR 2303235, DOI 10.1016/j.aim.2006.07.006
- Dominic Joyce, Configurations in abelian categories. III. Stability conditions and identities, Adv. Math. 215 (2007), no. 1, 153–219. MR 2354988, DOI 10.1016/j.aim.2007.04.002
- Dominic Joyce, Configurations in abelian categories. IV. Invariants and changing stability conditions, Adv. Math. 217 (2008), no. 1, 125–204. MR 2357325, DOI 10.1016/j.aim.2007.06.011
- D. Joyce and Y. Song, A theory of generalized DT invariants, preprint arXiv:0810.5645.
- János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959, DOI 10.1017/CBO9780511662560
- M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, preprint arxiv 0811.2435.
- M. Levine and R. Pandharipande, Algebraic cobordism revisited, Invent. Math. 176 (2009), no. 1, 63–130. MR 2485880, DOI 10.1007/s00222-008-0160-8
- Jun Li, Zero dimensional Donaldson-Thomas invariants of threefolds, Geom. Topol. 10 (2006), 2117–2171. MR 2284053, DOI 10.2140/gt.2006.10.2117
- D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math. 142 (2006), no. 5, 1263–1285. MR 2264664, DOI 10.1112/S0010437X06002302
- Nitin Nitsure, Construction of Hilbert and Quot schemes, Fundamental algebraic geometry, Math. Surveys Monogr., vol. 123, Amer. Math. Soc., Providence, RI, 2005, pp. 105–137. MR 2223407
- R. Pandharipande and R. P. Thomas, Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009), no. 2, 407–447. MR 2545686, DOI 10.1007/s00222-009-0203-9
- Markus Reineke, The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli, Invent. Math. 152 (2003), no. 2, 349–368. MR 1974891, DOI 10.1007/s00222-002-0273-4
- J. Stoppa and R. P. Thomas, Hilbert schemes and stable pairs: GIT and derived category wall crossings, preprint.
- R. P. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on $K3$ fibrations, J. Differential Geom. 54 (2000), no. 2, 367–438. MR 1818182, DOI 10.4310/jdg/1214341649
- Yukinobu Toda, Generating functions of stable pair invariants via wall-crossings in derived categories, New developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008) Adv. Stud. Pure Math., vol. 59, Math. Soc. Japan, Tokyo, 2010, pp. 389–434. MR 2683216, DOI 10.2969/aspm/05910389
- Yukinobu Toda, Curve counting theories via stable objects I. DT/PT correspondence, J. Amer. Math. Soc. 23 (2010), no. 4, 1119–1157. MR 2669709, DOI 10.1090/S0894-0347-10-00670-3
- Angelo Vistoli, Grothendieck topologies, fibered categories and descent theory, Fundamental algebraic geometry, Math. Surveys Monogr., vol. 123, Amer. Math. Soc., Providence, RI, 2005, pp. 1–104. MR 2223406, DOI 10.1007/s00222-005-0429-0
Bibliographic Information
- Tom Bridgeland
- Affiliation: All Souls College, Oxford, OX1 4AL United Kingdom
- MR Author ID: 635821
- ORCID: 0000-0001-5120-006X
- Received by editor(s): February 25, 2010
- Received by editor(s) in revised form: March 9, 2011
- Published electronically: April 6, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 24 (2011), 969-998
- MSC (2010): Primary 14N35, 14D23
- DOI: https://doi.org/10.1090/S0894-0347-2011-00701-7
- MathSciNet review: 2813335