On the “main conjecture” of equivariant Iwasawa theory
HTML articles powered by AMS MathViewer
- by Jürgen Ritter and Alfred Weiss;
- J. Amer. Math. Soc. 24 (2011), 1015-1050
- DOI: https://doi.org/10.1090/S0894-0347-2011-00704-2
- Published electronically: May 13, 2011
- PDF | Request permission
Abstract:
We prove the “main conjecture” of equivariant Iwasawa theory when $\mu =0$.References
- Pierrette Cassou-Noguès, Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta $p$-adiques, Invent. Math. 51 (1979), no. 1, 29–59 (French). MR 524276, DOI 10.1007/BF01389911
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. II, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987. With applications to finite groups and orders; A Wiley-Interscience Publication. MR 892316
- Pierre Deligne and Kenneth A. Ribet, Values of abelian $L$-functions at negative integers over totally real fields, Invent. Math. 59 (1980), no. 3, 227–286. MR 579702, DOI 10.1007/BF01453237
- Takako Fukaya and Kazuya Kato, A formulation of conjectures on $p$-adic zeta functions in noncommutative Iwasawa theory, Proceedings of the St. Petersburg Mathematical Society. Vol. XII, Amer. Math. Soc. Transl. Ser. 2, vol. 219, Amer. Math. Soc., Providence, RI, 2006, pp. 1–85. MR 2276851, DOI 10.1090/trans2/219/01
- Ralph Greenberg, On $p$-adic Artin $L$-functions, Nagoya Math. J. 89 (1983), 77–87. MR 692344, DOI 10.1017/S0027763000020250
- Takashi Hara, Iwasawa theory of totally real fields for certain non-commutative $p$-extensions, J. Number Theory 130 (2010), no. 4, 1068–1097. MR 2600423, DOI 10.1016/j.jnt.2009.08.008
- —, Inductive construction of the $p$-adic zeta functions for non-commutative $p$-extensions of totally real fields with exponent $p$. arXiv:0908.2178v1 [math.NT].
- T. Hawkes, I. M. Isaacs, and M. Özaydin, On the Möbius function of a finite group, Rocky Mountain J. Math. 19 (1989), no. 4, 1003–1034. MR 1039540, DOI 10.1216/RMJ-1989-19-4-1003
- Kakde, M., Proof of the main conjecture of noncommutative Iwasawa theory for totally real number fields in certain cases. J. Algebraic Geometry, posted on April 5, 2011, PII S 1056-3911(2011)00539-0 (to appear in print).
- Kazuya Kato, Iwasawa theory and generalizations, International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, pp. 335–357. MR 2334196, DOI 10.4171/022-1/14
- —, Iwasawa theory of totally real fields for Galois extensions of Heisenberg type. Preprint (“Very preliminary version”, 2007).
- Lau, I., Algebraic contributions to equivariant Iwasawa theory. Ph.D. thesis, Universität Augsburg (2010).
- Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2000. MR 1737196
- Jürgen Ritter and Alfred Weiss, The lifted root number conjecture and Iwasawa theory, Mem. Amer. Math. Soc. 157 (2002), no. 748, viii+90. MR 1894887, DOI 10.1090/memo/0748
- Jürgen Ritter and Alfred Weiss, Toward equivariant Iwasawa theory, Manuscripta Math. 109 (2002), no. 2, 131–146. MR 1935024, DOI 10.1007/s00229-002-0306-8
- Jürgen Ritter and Alfred Weiss, Toward equivariant Iwasawa theory. II, Indag. Math. (N.S.) 15 (2004), no. 4, 549–572. MR 2114937, DOI 10.1016/S0019-3577(04)80018-1
- Jürgen Ritter and Alfred Weiss, Toward equivariant Iwasawa theory. III, Math. Ann. 336 (2006), no. 1, 27–49. MR 2242618, DOI 10.1007/s00208-006-0773-4
- Jürgen Ritter and Alfred Weiss, Toward equivariant Iwasawa theory. IV, Homology Homotopy Appl. 7 (2005), no. 3, 155–171. MR 2205173, DOI 10.4310/HHA.2005.v7.n3.a8
- Jürgen Ritter and Alfred Weiss, Non-abelian pseudomeasures and congruences between abelian Iwasawa $L$-functions, Pure Appl. Math. Q. 4 (2008), no. 4, Special Issue: In honor of Jean-Pierre Serre., 1085–1106. MR 2441694, DOI 10.4310/PAMQ.2008.v4.n4.a5
- Jürgen Ritter and Alfred Weiss, The integral logarithm in Iwasawa theory: an exercise, J. Théor. Nombres Bordeaux 22 (2010), no. 1, 197–207 (English, with English and French summaries). MR 2675880, DOI 10.5802/jtnb.711
- Jürgen Ritter and Alfred Weiss, Congruences between abelian pseudomeasures, Math. Res. Lett. 15 (2008), no. 4, 715–725. MR 2424908, DOI 10.4310/MRL.2008.v15.n4.a10
- Jürgen Ritter and Alfred Weiss, Equivariant Iwasawa theory: an example, Doc. Math. 13 (2008), 117–129. MR 2420909
- Roblot, X.-F., and Weiss, A., Numerical evidence toward a 2-adic equivariant “main conjecture”. Experimental Mathematics 20 (2011), 169-176.
- Jean-Pierre Serre, Sur le résidu de la fonction zêta $p$-adique d’un corps de nombres, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 4, A183–A188 (French, with English summary). MR 506177
- A. Wiles, The Iwasawa conjecture for totally real fields, Ann. of Math. (2) 131 (1990), no. 3, 493–540. MR 1053488, DOI 10.2307/1971468
Bibliographic Information
- Jürgen Ritter
- Affiliation: Schnurbeinstrasse 14, 86391 Deuringen, Germany
- Email: jr@ritter-maths.de
- Alfred Weiss
- Affiliation: Department of Mathematics, University of Alberta, Edmonton, AB, Canada T6G 2G1
- Email: weissa@ualberta.ca
- Received by editor(s): June 29, 2010
- Received by editor(s) in revised form: March 28, 2011, and April 11, 2011
- Published electronically: May 13, 2011
- Additional Notes: The authors acknowledge financial support provided by DFG and NSERC
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 24 (2011), 1015-1050
- MSC (2010): Primary 11R23, 11R42, 11S40
- DOI: https://doi.org/10.1090/S0894-0347-2011-00704-2
- MathSciNet review: 2813337