W$^{*}$–superrigidity for Bernoulli actions of property (T) groups
HTML articles powered by AMS MathViewer
- by Adrian Ioana;
- J. Amer. Math. Soc. 24 (2011), 1175-1226
- DOI: https://doi.org/10.1090/S0894-0347-2011-00706-6
- Published electronically: June 8, 2011
- PDF | Request permission
Abstract:
We consider group measure space II$_{1}$ factors $M=L^{\infty }(X)\rtimes \Gamma$ arising from Bernoulli actions of ICC property (T) groups $\Gamma$ (more generally, of groups $\Gamma$ containing an infinite normal subgroup with the relative property (T)) and prove a rigidity result for $*$–homomorphisms $\theta :M\rightarrow M\overline {\otimes }M$.
We deduce that the action $\Gamma \curvearrowright X$ is W$^{*}$–superrigid, i.e. if $\Lambda \curvearrowright Y$ is any free, ergodic, measure preserving action such that the factors $M=L^{\infty }(X)\rtimes \Gamma$ and $L^{\infty }(Y)\rtimes \Lambda$ are isomorphic, then the actions $\Gamma \curvearrowright X$ and $\Lambda \curvearrowright Y$ must be conjugate.
Moreover, we show that if $p\in M\setminus \{1\}$ is a projection, then $pMp$ does not admit a group measure space decomposition nor a group von Neumann algebra decomposition (the latter under the additional assumption that $\Gamma$ is torsion free).
We also prove a rigidity result for $*$–homomorphisms $\theta :M\rightarrow M$, this time for $\Gamma$ in a larger class of groups than above, now including products of non–amenable groups. For certain groups $\Gamma$, e.g. $\Gamma =\mathbb {F}_{2}\times \mathbb {F}_{2}$, we deduce that $M$ does not embed into $pMp$, for any projection $p\in M\setminus \{1\}$, and obtain a description of the endomorphism semigroup of $M$.
References
- Bachir Bekka, Pierre de la Harpe, and Alain Valette, Kazhdan’s property (T), New Mathematical Monographs, vol. 11, Cambridge University Press, Cambridge, 2008. MR 2415834, DOI 10.1017/CBO9780511542749
- Nathanial P. Brown and Narutaka Ozawa, $C^*$-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, vol. 88, American Mathematical Society, Providence, RI, 2008. MR 2391387, DOI 10.1090/gsm/088
- M. Burger, Kazhdan constants for $\textrm {SL}(3,\textbf {Z})$, J. Reine Angew. Math. 413 (1991), 36–67. MR 1089795, DOI 10.1515/crll.1991.413.36
- Alain Connes, Sur la classification des facteurs de type $\textrm {II}$, C. R. Acad. Sci. Paris Sér. A-B 281 (1975), no. 1, Aii, A13–A15 (French, with English summary). MR 377534
- A. Connes: Correspondences, handwritten notes, 1980.
- A. Connes, A factor of type $\textrm {II}_{1}$ with countable fundamental group, J. Operator Theory 4 (1980), no. 1, 151–153. MR 587372
- A. Connes, J. Feldman, and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems 1 (1981), no. 4, 431–450 (1982). MR 662736, DOI 10.1017/s014338570000136x
- Ionut Chifan and Adrian Ioana, Ergodic subequivalence relations induced by a Bernoulli action, Geom. Funct. Anal. 20 (2010), no. 1, 53–67. MR 2647134, DOI 10.1007/s00039-010-0058-7
- A. Connes and V. Jones, A $\textrm {II}_{1}$ factor with two nonconjugate Cartan subalgebras, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 2, 211–212. MR 640947, DOI 10.1090/S0273-0979-1982-14981-3
- A. Connes and V. Jones, Property $T$ for von Neumann algebras, Bull. London Math. Soc. 17 (1985), no. 1, 57–62. MR 766450, DOI 10.1112/blms/17.1.57
- Alex Furman, Orbit equivalence rigidity, Ann. of Math. (2) 150 (1999), no. 3, 1083–1108. MR 1740985, DOI 10.2307/121063
- A. Furman: A survey of Measured Group Theory, Geometry, Rigidity, and Group Actions, 296–374, The University of Chicago Press, Chicago and London, 2011, available at arXiv:0901.0678.
- Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. II, Trans. Amer. Math. Soc. 234 (1977), no. 2, 325–359. MR 578730, DOI 10.1090/S0002-9947-1977-0578730-2
- Adrian Ioana, Rigidity results for wreath product $\textrm {II}_1$ factors, J. Funct. Anal. 252 (2007), no. 2, 763–791. MR 2360936, DOI 10.1016/j.jfa.2007.04.005
- A. Ioana: Cocycle superrigidity for profinite actions of property (T) groups, Duke Math. J. Volume 157, Number 2 (2011), 337–367.
- Adrian Ioana, Non-orbit equivalent actions of $\Bbb F_n$, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 4, 675–696 (English, with English and French summaries). MR 2568879, DOI 10.24033/asens.2106
- Adrian Ioana, Jesse Peterson, and Sorin Popa, Amalgamated free products of weakly rigid factors and calculation of their symmetry groups, Acta Math. 200 (2008), no. 1, 85–153. MR 2386109, DOI 10.1007/s11511-008-0024-5
- V. F. R. Jones, A $\textrm {II}_{1}$ factor anti-isomorphic to itself but without involutory antiautomorphisms, Math. Scand. 46 (1980), no. 1, 103–117. MR 585235, DOI 10.7146/math.scand.a-11855
- Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. II, Pure and Applied Mathematics, vol. 100, Academic Press, Inc., Orlando, FL, 1986. Advanced theory. MR 859186, DOI 10.1016/S0079-8169(08)60611-X
- D. A. Každan, On the connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priložen. 1 (1967), 71–74 (Russian). MR 209390
- Yoshikata Kida, Measure equivalence rigidity of the mapping class group, Ann. of Math. (2) 171 (2010), no. 3, 1851–1901. MR 2680399, DOI 10.4007/annals.2010.171.1851
- Y. Kida: Rigidity of amalgamated free products in measure equivalence theory, to appear in J. Topology, preprint arXiv:0902.2888.
- G. A. Margulis, Finitely-additive invariant measures on Euclidean spaces, Ergodic Theory Dynam. Systems 2 (1982), no. 3-4, 383–396 (1983). MR 721730, DOI 10.1017/S014338570000167X
- F. J. Murray and J. Von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), no. 1, 116–229. MR 1503275, DOI 10.2307/1968693
- F. J. Murray and J. von Neumann, On rings of operators. IV, Ann. of Math. (2) 44 (1943), 716–808. MR 9096, DOI 10.2307/1969107
- Donald S. Ornstein and Benjamin Weiss, Ergodic theory of amenable group actions. I. The Rohlin lemma, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 1, 161–164. MR 551753, DOI 10.1090/S0273-0979-1980-14702-3
- Narutaka Ozawa, Solid von Neumann algebras, Acta Math. 192 (2004), no. 1, 111–117. MR 2079600, DOI 10.1007/BF02441087
- Narutaka Ozawa and Sorin Popa, On a class of $\textrm {II}_1$ factors with at most one Cartan subalgebra, Ann. of Math. (2) 172 (2010), no. 1, 713–749. MR 2680430, DOI 10.4007/annals.2010.172.713
- N. Ozawa: Examples of groups which are not weakly amenable, preprint arXiv:1012.0613.
- Jesse Peterson, $L^2$-rigidity in von Neumann algebras, Invent. Math. 175 (2009), no. 2, 417–433. MR 2470111, DOI 10.1007/s00222-008-0154-6
- J. Peterson: Examples of group actions which are virtually W*-superrigid, preprint arXiv:1002.1745.
- S. Popa: Correspondences, INCREST preprint 1986, unpublished.
- Sorin Popa, Strong rigidity of $\rm II_1$ factors arising from malleable actions of $w$-rigid groups. I, Invent. Math. 165 (2006), no. 2, 369–408. MR 2231961, DOI 10.1007/s00222-006-0501-4
- Sorin Popa, Strong rigidity of $\rm II_1$ factors arising from malleable actions of $w$-rigid groups. II, Invent. Math. 165 (2006), no. 2, 409–451. MR 2231962, DOI 10.1007/s00222-006-0502-3
- Sorin Popa, On a class of type $\textrm {II}_1$ factors with Betti numbers invariants, Ann. of Math. (2) 163 (2006), no. 3, 809–899. MR 2215135, DOI 10.4007/annals.2006.163.809
- Sorin Popa, Some rigidity results for non-commutative Bernoulli shifts, J. Funct. Anal. 230 (2006), no. 2, 273–328. MR 2186215, DOI 10.1016/j.jfa.2005.06.017
- Sorin Popa, Cocycle and orbit equivalence superrigidity for malleable actions of $w$-rigid groups, Invent. Math. 170 (2007), no. 2, 243–295. MR 2342637, DOI 10.1007/s00222-007-0063-0
- Sorin Popa, Deformation and rigidity for group actions and von Neumann algebras, International Congress of Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, pp. 445–477. MR 2334200, DOI 10.4171/022-1/18
- Sorin Popa, On the superrigidity of malleable actions with spectral gap, J. Amer. Math. Soc. 21 (2008), no. 4, 981–1000. MR 2425177, DOI 10.1090/S0894-0347-07-00578-4
- Sorin Popa and Stefaan Vaes, Strong rigidity of generalized Bernoulli actions and computations of their symmetry groups, Adv. Math. 217 (2008), no. 2, 833–872. MR 2370283, DOI 10.1016/j.aim.2007.09.006
- Sorin Popa and Stefaan Vaes, On the fundamental group of $\textrm {II}_1$ factors and equivalence relations arising from group actions, Quanta of maths, Clay Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 2010, pp. 519–541. MR 2732063, DOI 10.1007/s00222-010-0268-5
- Sorin Popa and Stefaan Vaes, Group measure space decomposition of $\textrm {II}_1$ factors and $W^\ast$-superrigidity, Invent. Math. 182 (2010), no. 2, 371–417. MR 2729271, DOI 10.1007/s00222-010-0268-5
- I. M. Singer, Automorphisms of finite factors, Amer. J. Math. 77 (1955), 117–133. MR 66567, DOI 10.2307/2372424
- Stefaan Vaes, Rigidity results for Bernoulli actions and their von Neumann algebras (after Sorin Popa), Astérisque 311 (2007), Exp. No. 961, viii, 237–294. Séminaire Bourbaki. Vol. 2005/2006. MR 2359046
- Stefaan Vaes, Explicit computations of all finite index bimodules for a family of $\textrm {II}_1$ factors, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 5, 743–788 (English, with English and French summaries). MR 2504433, DOI 10.24033/asens.2081
- Stefaan Vaes, Factors of type II$_1$ without non-trivial finite index subfactors, Trans. Amer. Math. Soc. 361 (2009), no. 5, 2587–2606. MR 2471930, DOI 10.1090/S0002-9947-08-04585-6
Bibliographic Information
- Adrian Ioana
- Affiliation: Department of Mathematics, UCLA, Los Angeles, California 91125 and IMAR, 21 Calea Grivitei Street, 010702 Bucharest, Romania
- Email: adiioana@math.ucla.edu
- Received by editor(s): November 30, 2010
- Received by editor(s) in revised form: April 20, 2011
- Published electronically: June 8, 2011
- Additional Notes: The author was supported by a Clay Research Fellowship
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 24 (2011), 1175-1226
- MSC (2010): Primary 46L36; Secondary 28D15, 37A20
- DOI: https://doi.org/10.1090/S0894-0347-2011-00706-6
- MathSciNet review: 2813341