## Generic bases for cluster algebras and the Chamber Ansatz

HTML articles powered by AMS MathViewer

- by Christof Geiß, Bernard Leclerc and Jan Schröer
- J. Amer. Math. Soc.
**25**(2012), 21-76 - DOI: https://doi.org/10.1090/S0894-0347-2011-00715-7
- Published electronically: August 10, 2011
- PDF | Request permission

## Abstract:

Let $Q$ be a finite quiver without oriented cycles, and let $\Lambda$ be the corresponding preprojective algebra. Let $\mathfrak {g}$ be the Kac-Moody Lie algebra with Cartan datum given by $Q$, and let $W$ be its Weyl group. With $w \in W$, there is associated a unipotent cell $N^w$ of the Kac-Moody group with Lie algebra $\mathfrak {g}$. In previous work we proved that the coordinate ring $\mathbb {C}[N^w]$ of $N^w$ is a cluster algebra in a natural way. A central role is played by generating functions $\varphi _X$ of Euler characteristics of certain varieties of partial composition series of $X$, where $X$ runs through all modules in a Frobenius subcategory $\mathcal {C}_w$ of the category of nilpotent $\Lambda$-modules. The first aim of this article is to compare the function $\varphi _X$ with the so-called cluster character of $X$, which is defined in terms of the Euler characteristics of quiver Grassmannians. We show that for every $X$ in $\mathcal {C}_w$, $\varphi _X$ coincides, after an appropriate change of variables, with the cluster character of Fu and Keller associated with $X$ using any cluster-tilting object $T$ of $\mathcal {C}_w$. A crucial ingredient of the proof is the construction of an isomorphism between varieties of partial composition series of $X$ and certain quiver Grassmannians. This isomorphism is obtained in a very general setup and should be of interest in itself. Another important tool of the proof is a representation-theoretic version of the Chamber Ansatz of Berenstein, Fomin and Zelevinsky, adapted to Kac-Moody groups. As an application, we get a new description of a generic basis of the cluster algebra $\mathcal {A}(\underline {\Gamma }_T)$ obtained from $\mathcal {C}[N^w]$ via specialization of coefficients to 1. Here*generic*refers to the representation varieties of a quiver potential arising from the cluster-tilting module $T$. For the special case of coefficient-free acyclic cluster algebras this proves a conjecture by Dupont.

## References

- Claire Amiot,
*Cluster categories for algebras of global dimension 2 and quivers with potential*, Ann. Inst. Fourier (Grenoble)**59**(2009), no. 6, 2525–2590 (English, with English and French summaries). MR**2640929**, DOI 10.5802/aif.2499 - Claire Amiot, Idun Reiten, and Gordana Todorov,
*The ubiquity of generalized cluster categories*, Adv. Math.**226**(2011), no. 4, 3813–3849. MR**2764906**, DOI 10.1016/j.aim.2010.10.028 - Arkady Berenstein, Sergey Fomin, and Andrei Zelevinsky,
*Parametrizations of canonical bases and totally positive matrices*, Adv. Math.**122**(1996), no. 1, 49–149. MR**1405449**, DOI 10.1006/aima.1996.0057 - Arkady Berenstein and Andrei Zelevinsky,
*Total positivity in Schubert varieties*, Comment. Math. Helv.**72**(1997), no. 1, 128–166. MR**1456321**, DOI 10.1007/PL00000363 - Klaus Bongartz,
*Minimal singularities for representations of Dynkin quivers*, Comment. Math. Helv.**69**(1994), no. 4, 575–611. MR**1303228**, DOI 10.1007/BF02564505 - A. B. Buan, O. Iyama, I. Reiten, and J. Scott,
*Cluster structures for 2-Calabi-Yau categories and unipotent groups*, Compos. Math.**145**(2009), no. 4, 1035–1079. MR**2521253**, DOI 10.1112/S0010437X09003960 - A. Buan, O. Iyama, I. Reiten, D. Smith,
*Mutation of cluster-tilting objects and potentials*. Amer. J. Math. (to appear), 41pp., Preprint (2008), arXiv:0804.3813v4 [math.RT]. - Philippe Caldero and Frédéric Chapoton,
*Cluster algebras as Hall algebras of quiver representations*, Comment. Math. Helv.**81**(2006), no. 3, 595–616. MR**2250855**, DOI 10.4171/CMH/65 - Philippe Caldero and Bernhard Keller,
*From triangulated categories to cluster algebras*, Invent. Math.**172**(2008), no. 1, 169–211. MR**2385670**, DOI 10.1007/s00222-008-0111-4 - William Crawley-Boevey,
*On the exceptional fibres of Kleinian singularities*, Amer. J. Math.**122**(2000), no. 5, 1027–1037. MR**1781930**, DOI 10.1353/ajm.2000.0036 - William Crawley-Boevey and Jan Schröer,
*Irreducible components of varieties of modules*, J. Reine Angew. Math.**553**(2002), 201–220. MR**1944812**, DOI 10.1515/crll.2002.100 - Harm Derksen, Jerzy Weyman, and Andrei Zelevinsky,
*Quivers with potentials and their representations. I. Mutations*, Selecta Math. (N.S.)**14**(2008), no. 1, 59–119. MR**2480710**, DOI 10.1007/s00029-008-0057-9 - Harm Derksen, Jerzy Weyman, and Andrei Zelevinsky,
*Quivers with potentials and their representations II: applications to cluster algebras*, J. Amer. Math. Soc.**23**(2010), no. 3, 749–790. MR**2629987**, DOI 10.1090/S0894-0347-10-00662-4 - Yurij A. Drozd and Vladimir V. Kirichenko,
*Finite-dimensional algebras*, Springer-Verlag, Berlin, 1994. Translated from the 1980 Russian original and with an appendix by Vlastimil Dlab. MR**1284468**, DOI 10.1007/978-3-642-76244-4 - G. Dupont,
*Generic variables in acyclic cluster algebras*. 63pp, Preprint (2008), arXiv:0811.2909v1 [math.RT]. - Sergey Fomin and Andrei Zelevinsky,
*Cluster algebras. I. Foundations*, J. Amer. Math. Soc.**15**(2002), no. 2, 497–529. MR**1887642**, DOI 10.1090/S0894-0347-01-00385-X - Sergey Fomin and Andrei Zelevinsky,
*Cluster algebras. IV. Coefficients*, Compos. Math.**143**(2007), no. 1, 112–164. MR**2295199**, DOI 10.1112/S0010437X06002521 - Changjian Fu and Bernhard Keller,
*On cluster algebras with coefficients and 2-Calabi-Yau categories*, Trans. Amer. Math. Soc.**362**(2010), no. 2, 859–895. MR**2551509**, DOI 10.1090/S0002-9947-09-04979-4 - Peter Gabriel,
*Finite representation type is open*, Proceedings of the International Conference on Representations of Algebras (Carleton Univ., Ottawa, Ont., 1974) Carleton Math. Lecture Notes, No. 9, Carleton Univ., Ottawa, Ont., 1974, pp. Paper No. 10, 23. MR**0376769** - Christof Geiss, Bernard Leclerc, and Jan Schröer,
*Semicanonical bases and preprojective algebras*, Ann. Sci. École Norm. Sup. (4)**38**(2005), no. 2, 193–253 (English, with English and French summaries). MR**2144987**, DOI 10.1016/j.ansens.2004.12.001 - Christof Geiß, Bernard Leclerc, and Jan Schröer,
*Rigid modules over preprojective algebras*, Invent. Math.**165**(2006), no. 3, 589–632. MR**2242628**, DOI 10.1007/s00222-006-0507-y - Christof Geiss, Bernard Leclerc, and Jan Schröer,
*Partial flag varieties and preprojective algebras*, Ann. Inst. Fourier (Grenoble)**58**(2008), no. 3, 825–876 (English, with English and French summaries). MR**2427512**, DOI 10.5802/aif.2371 - C. Geiß, B. Leclerc, J. Schröer,
*Cluster algebra structures and semicanonical bases for unipotent groups*. 121pp., Preprint (2007), arXiv:math/0703039. - C. Geiß, B. Leclerc, J. Schröer,
*Kac-Moody groups and cluster algebras*. Adv. Math. 228 (2011), no. 1, 329–433. arXiv:1001.3545v2 [math.RT]. - Dieter Happel,
*Triangulated categories in the representation theory of finite-dimensional algebras*, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988. MR**935124**, DOI 10.1017/CBO9780511629228 - Bernhard Keller and Idun Reiten,
*Cluster-tilted algebras are Gorenstein and stably Calabi-Yau*, Adv. Math.**211**(2007), no. 1, 123–151. MR**2313531**, DOI 10.1016/j.aim.2006.07.013 - Bernhard Keller and Dong Yang,
*Derived equivalences from mutations of quivers with potential*, Adv. Math.**226**(2011), no. 3, 2118–2168. MR**2739775**, DOI 10.1016/j.aim.2010.09.019 - Shrawan Kumar,
*Kac-Moody groups, their flag varieties and representation theory*, Progress in Mathematics, vol. 204, Birkhäuser Boston, Inc., Boston, MA, 2002. MR**1923198**, DOI 10.1007/978-1-4612-0105-2 - G. Lusztig,
*Quivers, perverse sheaves, and quantized enveloping algebras*, J. Amer. Math. Soc.**4**(1991), no. 2, 365–421. MR**1088333**, DOI 10.1090/S0894-0347-1991-1088333-2 - G. Lusztig,
*Total positivity in reductive groups*, Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 531–568. MR**1327548**, DOI 10.1007/978-1-4612-0261-5_{2}0 - K. Nagao,
*Donaldson-Thomas theory and cluster algebras*. 33pp., Preprint (2010), arXiv:1002.4884 [math.AG]. - Yann Palu,
*Cluster characters for 2-Calabi-Yau triangulated categories*, Ann. Inst. Fourier (Grenoble)**58**(2008), no. 6, 2221–2248 (English, with English and French summaries). MR**2473635**, DOI 10.5802/aif.2412 - P.-G. Plamondon,
*Cluster algebras via cluster categories with infinite-dimensional morphism spaces*. Compositio Math. (to appear), 32pp, Preprint (2010), arXiv:1004.0830 [math.RT].

## Bibliographic Information

**Christof Geiß**- Affiliation: Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México D.F., México
- MR Author ID: 326818
- Email: christof@math.unam.mx
**Bernard Leclerc**- Affiliation: LMNO, Université de Caen, CNRS, UMR 6139, F-14032 Caen Cedex, France
- MR Author ID: 327337
- Email: leclerc@math.unicaen.fr
**Jan Schröer**- Affiliation: Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
- MR Author ID: 633566
- Email: schroer@math.uni-bonn.de
- Received by editor(s): May 13, 2010
- Received by editor(s) in revised form: May 13, 2011
- Published electronically: August 10, 2011
- © Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc.
**25**(2012), 21-76 - MSC (2010): Primary 13F60, 14M15, 14M99, 16G20, 20G44
- DOI: https://doi.org/10.1090/S0894-0347-2011-00715-7
- MathSciNet review: 2833478