Burkholder integrals, Morrey’s problem and quasiconformal mappings
HTML articles powered by AMS MathViewer
- by Kari Astala, Tadeusz Iwaniec, István Prause and Eero Saksman;
- J. Amer. Math. Soc. 25 (2012), 507-531
- DOI: https://doi.org/10.1090/S0894-0347-2011-00718-2
- Published electronically: October 6, 2011
- PDF | Request permission
Abstract:
Inspired by Morrey’s Problem (on rank-one convex functionals) and the Burkholder integrals (of his martingale theory) we find that the Burkholder functionals $\text {B}_p$, $p \geqslant 2$, are quasiconcave, when tested on deformations of the identity $f\in \mathrm {Id} + {\mathscr C}^\infty _\circ (\Omega )$ with $\text {B}_p (Df(x)) \geqslant 0$ pointwise, or equivalently, deformations such that $|D f |^2 \leqslant \frac {p}{p-2}J_f$. In particular, quasiconcavity holds in explicit neighbourhoods of the identity map. Among the many immediate consequences, this gives the strongest possible $\mathscr L^p$-estimates for the gradient of a principal solution to the Beltrami equation $f_{\bar {z}}=\mu (z) f_z$, for any $p$ in the critical interval $2\leqslant p \leqslant 1+1/\|\mu \|_\infty$.References
- Lars V. Ahlfors, Lectures on quasiconformal mappings, 2nd ed., University Lecture Series, vol. 38, American Mathematical Society, Providence, RI, 2006. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard. MR 2241787, DOI 10.1090/ulect/038
- Lars Ahlfors and Lipman Bers, Riemann’s mapping theorem for variable metrics, Ann. of Math. (2) 72 (1960), 385–404. MR 115006, DOI 10.2307/1970141
- Stuart S. Antman, Fundamental mathematical problems in the theory of nonlinear elasticity, Numerical solution of partial differential equations, III (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, College Park, Md., 1975) Academic Press, New York-London, 1976, pp. 35–54. MR 468503
- Kari Astala, Area distortion of quasiconformal mappings, Acta Math. 173 (1994), no. 1, 37–60. MR 1294669, DOI 10.1007/BF02392568
- Kari Astala, Tadeusz Iwaniec, and Gaven Martin, Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton Mathematical Series, vol. 48, Princeton University Press, Princeton, NJ, 2009. MR 2472875
- K. Astala, T. Iwaniec, G. J. Martin, and J. Onninen, Extremal mappings of finite distortion, Proc. London Math. Soc. (3) 91 (2005), no. 3, 655–702. MR 2180459, DOI 10.1112/S0024611505015376
- Kari Astala and Vincenzo Nesi, Composites and quasiconformal mappings: new optimal bounds in two dimensions, Calc. Var. Partial Differential Equations 18 (2003), no. 4, 335–355. MR 2020365, DOI 10.1007/s00526-003-0145-9
- Albert Baernstein II and Stephen J. Montgomery-Smith, Some conjectures about integral means of $\partial f$ and $\overline \partial f$, Complex analysis and differential equations (Uppsala, 1997) Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist., vol. 64, Uppsala Univ., Uppsala, 1999, pp. 92–109. MR 1758918
- John M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1976/77), no. 4, 337–403. MR 475169, DOI 10.1007/BF00279992
- J. M. Ball, Constitutive inequalities and existence theorems in nonlinear elastostatics, Nonlinear analysis and mechanics: Heriot-Watt Symposium (Edinburgh, 1976) Res. Notes in Math., No. 17, Pitman, London-San Francisco, Calif.-Melbourne, 1977, pp. 187–241. MR 478899
- J. M. Ball, Does rank-one convexity imply quasiconvexity?, Metastability and incompletely posed problems (Minneapolis, Minn., 1985) IMA Vol. Math. Appl., vol. 3, Springer, New York, 1987, pp. 17–32. MR 870007, DOI 10.1007/978-1-4613-8704-6_{2}
- J. M. Ball, Sets of gradients with no rank-one connections, J. Math. Pures Appl. (9) 69 (1990), no. 3, 241–259 (English, with French summary). MR 1070479
- J. M. Ball, The calculus of variations and materials science, Quart. Appl. Math. 56 (1998), no. 4, 719–740. Current and future challenges in the applications of mathematics (Providence, RI, 1997). MR 1668735, DOI 10.1090/qam/1668735
- R. Bañuelos, The foundational inequalities of D.L. Burkholder and some of their ramifications, Dedicated to Don Burkholder, preprint, 2010.
- Rodrigo Bañuelos and Prabhu Janakiraman, $L^p$-bounds for the Beurling-Ahlfors transform, Trans. Amer. Math. Soc. 360 (2008), no. 7, 3603–3612. MR 2386238, DOI 10.1090/S0002-9947-08-04537-6
- Rodrigo Bañuelos and Arthur Lindeman II, A martingale study of the Beurling-Ahlfors transform in $\textbf {R}^n$, J. Funct. Anal. 145 (1997), no. 1, 224–265. MR 1442167, DOI 10.1006/jfan.1996.3022
- Rodrigo Bañuelos and Gang Wang, Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transforms, Duke Math. J. 80 (1995), no. 3, 575–600. MR 1370109, DOI 10.1215/S0012-7094-95-08020-X
- B. V. Boyarskiĭ, Homeomorphic solutions of Beltrami systems, Dokl. Akad. Nauk SSSR (N.S.) 102 (1955), 661–664 (Russian). MR 71620
- B. V. Bojarski, Generalized solutions of a system of differential equations of the first order and elliptic type with discontinuous coefficients, Report. University of Jyväskylä Department of Mathematics and Statistics, vol. 118, University of Jyväskylä, Jyväskylä, 2009. Translated from the 1957 Russian original; With a foreword by Eero Saksman. MR 2488720
- D. L. Burkholder, An elementary proof of an inequality of R. E. A. C. Paley, Bull. London Math. Soc. 17 (1985), no. 5, 474–478. MR 806015, DOI 10.1112/blms/17.5.474
- D. L. Burkholder, A sharp and strict $L^p$-inequality for stochastic integrals, Ann. Probab. 15 (1987), no. 1, 268–273. MR 877602
- Donald L. Burkholder, A proof of Pełczynśki’s conjecture for the Haar system, Studia Math. 91 (1988), no. 1, 79–83. MR 957287, DOI 10.4064/sm-91-1-79-83
- Donald L. Burkholder, Sharp inequalities for martingales and stochastic integrals, Astérisque 157-158 (1988), 75–94. Colloque Paul Lévy sur les Processus Stochastiques (Palaiseau, 1987). MR 976214
- Philippe G. Ciarlet, Mathematical elasticity. Vol. I, Studies in Mathematics and its Applications, vol. 20, North-Holland Publishing Co., Amsterdam, 1988. Three-dimensional elasticity. MR 936420
- Oliver Dragičević and Alexander Volberg, Sharp estimate of the Ahlfors-Beurling operator via averaging martingale transforms, Michigan Math. J. 51 (2003), no. 2, 415–435. MR 1992955, DOI 10.1307/mmj/1060013205
- Daniel Faraco and László Székelyhidi, Tartar’s conjecture and localization of the quasiconvex hull in $\Bbb R^{2\times 2}$, Acta Math. 200 (2008), no. 2, 279–305. MR 2413136, DOI 10.1007/s11511-008-0028-1
- Stefan Geiss, Stephen Montgomery-Smith, and Eero Saksman, On singular integral and martingale transforms, Trans. Amer. Math. Soc. 362 (2010), no. 2, 553–575. MR 2551497, DOI 10.1090/S0002-9947-09-04953-8
- L. Greco and T. Iwaniec, New inequalities for the Jacobian, Ann. Inst. H. Poincaré C Anal. Non Linéaire 11 (1994), no. 1, 17–35 (English, with English and French summaries). MR 1259100, DOI 10.1016/S0294-1449(16)30194-9
- Stanislav Hencl, Pekka Koskela, and Jani Onninen, A note on extremal mappings of finite distortion, Math. Res. Lett. 12 (2005), no. 2-3, 231–237. MR 2150879, DOI 10.4310/MRL.2005.v12.n2.a8
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 344463
- T. Iwaniec, Extremal inequalities in Sobolev spaces and quasiconformal mappings, Z. Anal. Anwendungen 1 (1982), no. 6, 1–16 (English, with German and Russian summaries). MR 719167, DOI 10.4171/ZAA/37
- Tadeusz Iwaniec, Nonlinear Cauchy-Riemann operators in ${\Bbb R}^n$, Trans. Amer. Math. Soc. 354 (2002), no. 5, 1961–1995. MR 1881026, DOI 10.1090/S0002-9947-02-02914-8
- T. Iwaniec, L. Kovalev, J. Onninen, Diffeomorphic approximation of Sobolev homeomorphisms. Arch. Rat. Mech. Anal., to appear.
- Tadeusz Iwaniec and Gaven Martin, Geometric function theory and non-linear analysis, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2001. MR 1859913
- Pekka Koskela and Jani Onninen, Mappings of finite distortion: decay of the Jacobian in the plane, Adv. Calc. Var. 1 (2008), no. 3, 309–321. MR 2458240, DOI 10.1515/ACV.2008.013
- R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 193–217. MR 732343
- Charles B. Morrey Jr., Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2 (1952), 25–53. MR 54865
- Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR 202511
- Stefan Müller, A surprising higher integrability property of mappings with positive determinant, Bull. Amer. Math. Soc. (N.S.) 21 (1989), no. 2, 245–248. MR 999618, DOI 10.1090/S0273-0979-1989-15818-7
- Stefan Müller, Rank-one convexity implies quasiconvexity on diagonal matrices, Internat. Math. Res. Notices 20 (1999), 1087–1095. MR 1728018, DOI 10.1155/S1073792899000598
- F. Nazarov, S. Treil, and A. Volberg, The Bellman functions and two-weight inequalities for Haar multipliers, J. Amer. Math. Soc. 12 (1999), no. 4, 909–928. MR 1685781, DOI 10.1090/S0894-0347-99-00310-0
- F. Nazarov, S. Treil, and A. Volberg, Bellman function in stochastic control and harmonic analysis, Systems, approximation, singular integral operators, and related topics (Bordeaux, 2000) Oper. Theory Adv. Appl., vol. 129, Birkhäuser, Basel, 2001, pp. 393–423. MR 1882704
- Pablo Pedregal and Vladimír Šverák, A note on quasiconvexity and rank-one convexity for $2\times 2$ matrices, J. Convex Anal. 5 (1998), no. 1, 107–117. MR 1649433
- Stefanie Petermichl and Alexander Volberg, Heating of the Ahlfors-Beurling operator: weakly quasiregular maps on the plane are quasiregular, Duke Math. J. 112 (2002), no. 2, 281–305. MR 1894362, DOI 10.1215/S0012-9074-02-11223-X
- Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991. MR 1157815
- Vladimír Šverák, Rank-one convexity does not imply quasiconvexity, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), no. 1-2, 185–189. MR 1149994, DOI 10.1017/S0308210500015080
- A. Vol′berg and F. Nazarov, Heat extension of the Beurling operator and estimates for its norm, Algebra i Analiz 15 (2003), no. 4, 142–158 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 15 (2004), no. 4, 563–573. MR 2068982, DOI 10.1090/S1061-0022-04-00822-2
Bibliographic Information
- Kari Astala
- Affiliation: Department of Mathematics and Statistics, University of Helsinki, P. O. Box 68, Gustaf Hällströmin katu 2b, FI-00014, Helsinki, Finland
- Email: kari.astala@helsinki.fi
- Tadeusz Iwaniec
- Affiliation: Department of Mathematics, Syracuse University, Syracuse, New York 13244, USA, and Department of Mathematics and Statistics, University of Helsinki, P. O. Box 68, Gustaf Hällströmin katu 2b, FI-00014, Helsinki, Finland
- Email: tiwaniec@syr.edu
- István Prause
- Affiliation: Department of Mathematics and Statistics, University of Helsinki, P. O. Box 68, Gustaf Hällströmin katu 2b, FI-00014, Helsinki, Finland
- Email: istvan.prause@helsinki.fi
- Eero Saksman
- Affiliation: Department of Mathematics and Statistics, University of Helsinki, P. O. Box 68, Gustaf Hällströmin katu 2b, FI-00014, Helsinki, Finland
- MR Author ID: 315983
- Email: eero.saksman@helsinki.fi
- Received by editor(s): December 5, 2010
- Received by editor(s) in revised form: August 19, 2011
- Published electronically: October 6, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 25 (2012), 507-531
- MSC (2010): Primary 30C62, 30C70, 49K10, 49K30
- DOI: https://doi.org/10.1090/S0894-0347-2011-00718-2
- MathSciNet review: 2869025