## The archimedean theory of the exterior square $L$-functions over $\mathbb {Q}$

HTML articles powered by AMS MathViewer

- by Stephen D. Miller and Wilfried Schmid PDF
- J. Amer. Math. Soc.
**25**(2012), 465-506

## Abstract:

The analytic properties of automorphic $L$-functions have historically been obtained either through integral representations (the “Rankin-Selberg method”) or properties of the Fourier expansions of Eisenstein series (the “Langlands-Shahidi method”). We introduce a method based on pairings of automorphic distributions that appears to be applicable to a wide variety of $L$-functions, including all which have integral representations. In some sense our method could be considered a completion of the Rankin-Selberg method because of its common features. We consider a particular but representative example, the exterior square $L$-functions on $GL(n)$, by constructing a pairing which we compute as a product of this $L$-function times an explicit ratio of Gamma functions. We use this to deduce that exterior square $L$-functions, when multiplied by the Gamma factors predicted by Langlands, are holomorphic on $\mathbb {C}-\{0,1\}$ with at most simple poles at 0 and 1, proving a conjecture of Langlands which has not been obtained by the existing two methods.## References

- Dustin Belt,
*On Local Exterior-Square L-functions*, Ph.D. Thesis, 2011. http://arxiv.org/abs/1108.2200. - Daniel Bump and Solomon Friedberg,
*The exterior square automorphic $L$-functions on $\textrm {GL}(n)$*, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989) Israel Math. Conf. Proc., vol. 3, Weizmann, Jerusalem, 1990, pp. 47–65. MR**1159108** - W. Casselman,
*Jacquet modules for real reductive groups*, Proceedings of the International Congress of Mathematicians (Helsinki, 1978) Acad. Sci. Fennica, Helsinki, 1980, pp. 557–563. MR**562655** - W. Casselman,
*Canonical extensions of Harish-Chandra modules to representations of $G$*, Canad. J. Math.**41**(1989), no. 3, 385–438. MR**1013462**, DOI 10.4153/CJM-1989-019-5 - William Casselman, Henryk Hecht, and Dragan Miličić,
*Bruhat filtrations and Whittaker vectors for real groups*, The mathematical legacy of Harish-Chandra (Baltimore, MD, 1998) Proc. Sympos. Pure Math., vol. 68, Amer. Math. Soc., Providence, RI, 2000, pp. 151–190. MR**1767896**, DOI 10.1090/pspum/068/1767896 - Jacques Dixmier and Paul Malliavin,
*Factorisations de fonctions et de vecteurs indéfiniment différentiables*, Bull. Sci. Math. (2)**102**(1978), no. 4, 307–330 (French, with English summary). MR**517765** - Sergey Fomin and Andrei Zelevinsky,
*Double Bruhat cells and total positivity*, J. Amer. Math. Soc.**12**(1999), no. 2, 335–380. MR**1652878**, DOI 10.1090/S0894-0347-99-00295-7 - Roger Godement and Hervé Jacquet,
*Zeta functions of simple algebras*, Lecture Notes in Mathematics, Vol. 260, Springer-Verlag, Berlin-New York, 1972. MR**0342495** - Roe Goodman and Nolan R. Wallach,
*Whittaker vectors and conical vectors*, J. Functional Analysis**39**(1980), no. 2, 199–279. MR**597811**, DOI 10.1016/0022-1236(80)90013-0 - Michael Harris and Richard Taylor,
*The geometry and cohomology of some simple Shimura varieties*, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001. With an appendix by Vladimir G. Berkovich. MR**1876802** - Guy Henniart,
*Une preuve simple des conjectures de Langlands pour $\textrm {GL}(n)$ sur un corps $p$-adique*, Invent. Math.**139**(2000), no. 2, 439–455 (French, with English summary). MR**1738446**, DOI 10.1007/s002220050012 - H. Jacquet and J. A. Shalika,
*On Euler products and the classification of automorphic representations. I*, Amer. J. Math.**103**(1981), no. 3, 499–558. MR**618323**, DOI 10.2307/2374103 - Hervé Jacquet and Joseph Shalika,
*Exterior square $L$-functions*, Automorphic forms, Shimura varieties, and $L$-functions, Vol. II (Ann Arbor, MI, 1988) Perspect. Math., vol. 11, Academic Press, Boston, MA, 1990, pp. 143–226. MR**1044830** - Hervé Jacquet, Ilja Iosifovitch Piatetski-Shapiro, and Joseph Shalika,
*Automorphic forms on $\textrm {GL}(3)$. I*, Ann. of Math. (2)**109**(1979), no. 1, 169–212. MR**519356**, DOI 10.2307/1971270 - Dihua Jiang,
*On the fundamental automorphic $L$-functions of $\textrm {SO}(2n+1)$*, Int. Math. Res. Not. , posted on (2006), Art. ID 64069, 26. MR**2211151**, DOI 10.1155/IMRN/2006/64069 - Henry H. Kim,
*Langlands-Shahidi method and poles of automorphic $L$-functions: application to exterior square $L$-functions*, Canad. J. Math.**51**(1999), no. 4, 835–849. MR**1701344**, DOI 10.4153/CJM-1999-036-0 - Henry H. Kim,
*Functoriality for the exterior square of $\textrm {GL}_4$ and the symmetric fourth of $\textrm {GL}_2$*, J. Amer. Math. Soc.**16**(2003), no. 1, 139–183. With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak. MR**1937203**, DOI 10.1090/S0894-0347-02-00410-1 - R. P. Langlands,
*Problems in the theory of automorphic forms*, Lectures in modern analysis and applications, III, Lecture Notes in Math., Vol. 170, Springer, Berlin, 1970, pp. 18–61. MR**0302614** - Robert P. Langlands,
*Euler products*, Yale Mathematical Monographs, vol. 1, Yale University Press, New Haven, Conn.-London, 1971. A James K. Whittemore Lecture in Mathematics given at Yale University, 1967. MR**0419366** - R. P. Langlands,
*On the classification of irreducible representations of real algebraic groups*, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 101–170. MR**1011897**, DOI 10.1090/surv/031/03 - Stephen D. Miller and Wilfried Schmid,
*Distributions and analytic continuation of Dirichlet series*, J. Funct. Anal.**214**(2004), no. 1, 155–220. MR**2079889**, DOI 10.1016/j.jfa.2004.03.002 - Stephen D. Miller and Wilfried Schmid,
*Automorphic distributions, $L$-functions, and Voronoi summation for $\textrm {GL}(3)$*, Ann. of Math. (2)**164**(2006), no. 2, 423–488. MR**2247965**, DOI 10.4007/annals.2006.164.423 - Stephen D. Miller and Wilfried Schmid,
*The Rankin-Selberg method for automorphic distributions*, Representation theory and automorphic forms, Progr. Math., vol. 255, Birkhäuser Boston, Boston, MA, 2008, pp. 111–150. MR**2369497**, DOI 10.1007/978-0-8176-4646-2_{4} - Stephen D. Miller and Wilfried Schmid,
*Pairings of automorphic distributions*. To appear in*Mathematische Annalen*, http://arxiv.org/abs/1106.2364 - Stephen D. Miller and Wilfried Schmid,
*Adelization of Automorphic Distributions and Mirabolic Eisenstein Series*. To appear in*Contemporary Mathematics*, volume in honor of Gregg Zuckerman’s 60th birthday, Jeff Adams, Bong Lian, and Siddhartha Sahi, editors, http://arxiv.org/abs/1106.2583. - Stephen D. Miller and Wilfried Schmid,
*On the rapid decay of cuspidal automorphic forms*. http://arxiv.org/abs/1106.2149. - Wilfried Schmid,
*Automorphic distributions for $\textrm {SL}(2,\Bbb R)$*, Conférence Moshé Flato 1999, Vol. I (Dijon), Math. Phys. Stud., vol. 21, Kluwer Acad. Publ., Dordrecht, 2000, pp. 345–387. MR**1805897** - Freydoon Shahidi,
*A proof of Langlands’ conjecture on Plancherel measures; complementary series for $p$-adic groups*, Ann. of Math. (2)**132**(1990), no. 2, 273–330. MR**1070599**, DOI 10.2307/1971524 - Eric Stade,
*Mellin transforms of $\textrm {GL}(n,\Bbb R)$ Whittaker functions*, Amer. J. Math.**123**(2001), no. 1, 121–161. MR**1827280** - Marko Tadić,
*$\textrm {GL}(n,\Bbb C)\sphat$ and $\textrm {GL}(n,\Bbb R)\sphat$*, Automorphic forms and $L$-functions II. Local aspects, Contemp. Math., vol. 489, Amer. Math. Soc., Providence, RI, 2009, pp. 285–313. MR**2537046**, DOI 10.1090/conm/489/09551 - David A. Vogan Jr.,
*Gel′fand-Kirillov dimension for Harish-Chandra modules*, Invent. Math.**48**(1978), no. 1, 75–98. MR**506503**, DOI 10.1007/BF01390063 - Nolan R. Wallach,
*Asymptotic expansions of generalized matrix entries of representations of real reductive groups*, Lie group representations, I (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1024, Springer, Berlin, 1983, pp. 287–369. MR**727854**, DOI 10.1007/BFb0071436 - D. P. Želobenko,
*Compact Lie groups and their representations*, Translations of Mathematical Monographs, Vol. 40, American Mathematical Society, Providence, R.I., 1973. Translated from the Russian by Israel Program for Scientific Translations. MR**0473098**

## Additional Information

**Stephen D. Miller**- Affiliation: Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854-8019
- Email: miller@math.rutgers.edu
**Wilfried Schmid**- Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
- Email: schmid@math.harvard.edu
- Received by editor(s): November 24, 2010
- Received by editor(s) in revised form: September 12, 2011
- Published electronically: December 6, 2011
- Additional Notes: The first author was partially supported by NSF grant DMS-0901594 and an Alfred P. Sloan Foundation Fellowship

The second author was partially supported by DARPA grant HR0011-04-1-0031 and NSF grant DMS-0500922 - © Copyright 2011 by Stephen D. Miller and Wilfried Schmid
- Journal: J. Amer. Math. Soc.
**25**(2012), 465-506 - MSC (2010): Primary 11F55, 11F66
- DOI: https://doi.org/10.1090/S0894-0347-2011-00719-4
- MathSciNet review: 2869024

Dedicated: In memory of Joseph Shalika