Gravitational instantons from rational elliptic surfaces
HTML articles powered by AMS MathViewer
- by Hans-Joachim Hein;
- J. Amer. Math. Soc. 25 (2012), 355-393
- DOI: https://doi.org/10.1090/S0894-0347-2011-00723-6
- Published electronically: November 18, 2011
- PDF | Request permission
Abstract:
Let $X$ denote the complex projective plane, blown up at the nine base points of a pencil of cubics, and let $D$ be any fiber of the resulting elliptic fibration on $X$. Using ansatz metrics inspired by work of Gross-Wilson and a PDE method due to Tian-Yau, we prove that $X \setminus D$ admits complete Ricci-flat Kähler metrics in most de Rham cohomology classes. If $D$ is smooth, the metrics converge to split flat cylinders $\mathbb {R}^+ \times S^1 \times D$ at an exponential rate. In this case, we also obtain a partial uniqueness result and a local description of the Einstein moduli space, which contains cylindrical metrics whose cross section does not split off a circle. If $D$ is singular but of finite monodromy, they converge at least polynomially to flat $T^2$-submersions over flat $2$-dimensional cones that need not be quotients of $\mathbb {R}^2$. If $D$ is singular of infinite monodromy, their volume growth rates are $4/3$ and $2$ for the Kodaira types $\textrm {I}_b$ and ${\textrm {I}_b}^*$, their injectivity radii decay like $r^{-1/3}$ and $(\log r)^{-1/2}$, and their curvature tensors decay like $r^{-2}$ and $r^{-2}(\log r)^{-1}$. In particular, the $\textrm {I}_b$ examples show that a curvature estimate due to Cheeger and Tian cannot be improved in general.References
- M. T. Anderson, The $L^2$ structure of moduli spaces of Einstein metrics on $4$-manifolds, Geom. Funct. Anal. 2 (1992), no. 1, 29–89. MR 1143663, DOI 10.1007/BF01895705
- Michael Atiyah and Nigel Hitchin, The geometry and dynamics of magnetic monopoles, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 1988. MR 934202, DOI 10.1515/9781400859306
- W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574, DOI 10.1007/978-3-642-96754-2
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- O. Biquard, V. Minerbe, A Kummer construction for gravitational instantons, Comm. Math. Phys., to appear.
- Peter Buser, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 2, 213–230. MR 683635
- Jeff Cheeger, Degeneration of Einstein metrics and metrics with special holonomy, Surveys in differential geometry, Vol. VIII (Boston, MA, 2002) Surv. Differ. Geom., vol. 8, Int. Press, Somerville, MA, 2003, pp. 29–73. MR 2039985, DOI 10.4310/SDG.2003.v8.n1.a2
- Jeff Cheeger and Tobias H. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. (2) 144 (1996), no. 1, 189–237. MR 1405949, DOI 10.2307/2118589
- Jeff Cheeger, Mikhail Gromov, and Michael Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geometry 17 (1982), no. 1, 15–53. MR 658471
- Jeff Cheeger and Gang Tian, Curvature and injectivity radius estimates for Einstein 4-manifolds, J. Amer. Math. Soc. 19 (2006), no. 2, 487–525. MR 2188134, DOI 10.1090/S0894-0347-05-00511-4
- Sergey A. Cherkis and Nigel J. Hitchin, Gravitational instantons of type $D_k$, Comm. Math. Phys. 260 (2005), no. 2, 299–317. MR 2177322, DOI 10.1007/s00220-005-1404-8
- Sergey A. Cherkis and Anton Kapustin, Hyper-Kähler metrics from periodic monopoles, Phys. Rev. D (3) 65 (2002), no. 8, 084015, 10. MR 1899201, DOI 10.1103/PhysRevD.65.084015
- S. Donaldson, Calabi-Yau metrics on Kummer surfaces as a model gluing problem, preprint, arXiv:1007.4218.
- Daniel S. Freed, Special Kähler manifolds, Comm. Math. Phys. 203 (1999), no. 1, 31–52. MR 1695113, DOI 10.1007/s002200050604
- Robert E. Gompf and András I. Stipsicz, $4$-manifolds and Kirby calculus, Graduate Studies in Mathematics, vol. 20, American Mathematical Society, Providence, RI, 1999. MR 1707327, DOI 10.1090/gsm/020
- Ryushi Goto, Moduli spaces of topological calibrations, Calabi-Yau, hyper-Kähler, $G_2$ and $\textrm {Spin}(7)$ structures, Internat. J. Math. 15 (2004), no. 3, 211–257. MR 2060789, DOI 10.1142/S0129167X04002296
- Brian R. Greene, Alfred Shapere, Cumrun Vafa, and Shing-Tung Yau, Stringy cosmic strings and noncompact Calabi-Yau manifolds, Nuclear Phys. B 337 (1990), no. 1, 1–36. MR 1059826, DOI 10.1016/0550-3213(90)90248-C
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- Alexander Grigor’yan and Laurent Saloff-Coste, Stability results for Harnack inequalities, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 3, 825–890 (English, with English and French summaries). MR 2149405, DOI 10.5802/aif.2116
- Mark Gross and P. M. H. Wilson, Large complex structure limits of $K3$ surfaces, J. Differential Geom. 55 (2000), no. 3, 475–546. MR 1863732
- Brian Harbourne and William E. Lang, Multiple fibers on rational elliptic surfaces, Trans. Amer. Math. Soc. 307 (1988), no. 1, 205–223. MR 936813, DOI 10.1090/S0002-9947-1988-0936813-6
- Hans-Joachim Hein, On gravitational instantons, ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)–Princeton University. MR 2813955
- Hans-Joachim Hein, Weighted Sobolev inequalities under lower Ricci curvature bounds, Proc. Amer. Math. Soc. 139 (2011), no. 8, 2943–2955. MR 2801635, DOI 10.1090/S0002-9939-2011-10799-8
- N. J. Hitchin, Twistor construction of Einstein metrics, Global Riemannian geometry (Durham, 1983) Ellis Horwood Ser. Math. Appl., Horwood, Chichester, 1984, pp. 115–125. MR 757213
- N. J. Hitchin, The moduli space of complex Lagrangian submanifolds, Asian J. Math. 3 (1999), no. 1, 77–91. Sir Michael Atiyah: a great mathematician of the twentieth century. MR 1701923, DOI 10.4310/AJM.1999.v3.n1.a4
- Daniel Huybrechts, Complex geometry, Universitext, Springer-Verlag, Berlin, 2005. An introduction. MR 2093043
- Dominic Joyce, Asymptotically locally Euclidean metrics with holonomy $\textrm {SU}(m)$, Ann. Global Anal. Geom. 19 (2001), no. 1, 55–73. MR 1824171, DOI 10.1023/A:1006622430781
- F. Klein, Vorlesungen über die Theorie der elliptischen Modulfunctionen, Erster Band, Teubner, Leipzig, 1890.
- K. Kodaira, On compact analytic surfaces. II, III, Ann. of Math. (2) 77 (1963), 563–626; 78 (1963), 1–40. MR 184257, DOI 10.2307/1970500
- K. Kodaira, L. Nirenberg, and D. C. Spencer, On the existence of deformations of complex analytic structures, Ann. of Math. (2) 68 (1958), 450–459. MR 112157, DOI 10.2307/1970256
- K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. III. Stability theorems for complex structures, Ann. of Math. (2) 71 (1960), 43–76. MR 115189, DOI 10.2307/1969879
- Bert Koehler and Marco Kühnel, On asymptotics of complete Ricci-flat Kähler metrics on open manifolds, Manuscripta Math. 132 (2010), no. 3-4, 431–462. MR 2652441, DOI 10.1007/s00229-010-0354-4
- N. Koiso, Einstein metrics and complex structures, Invent. Math. 73 (1983), no. 1, 71–106. MR 707349, DOI 10.1007/BF01393826
- Alexei Kovalev, Twisted connected sums and special Riemannian holonomy, J. Reine Angew. Math. 565 (2003), 125–160. MR 2024648, DOI 10.1515/crll.2003.097
- Alexei Kovalev, Ricci-flat deformations of asymptotically cylindrical Calabi-Yau manifolds, Proceedings of Gökova Geometry-Topology Conference 2005, Gökova Geometry/Topology Conference (GGT), Gökova, 2006, pp. 140–156. MR 2282013
- P. B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (1989), no. 3, 665–683. MR 992334
- P. B. Kronheimer, A Torelli-type theorem for gravitational instantons, J. Differential Geom. 29 (1989), no. 3, 685–697. MR 992335
- Claude LeBrun, Complete Ricci-flat Kähler metrics on $\textbf {C}^n$ need not be flat, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989) Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 297–304. MR 1128554, DOI 10.1090/pspum/052.2/1128554
- Peter Li and Luen-Fai Tam, Green’s functions, harmonic functions, and volume comparison, J. Differential Geom. 41 (1995), no. 2, 277–318. MR 1331970
- John C. Loftin, Singular semi-flat Calabi-Yau metrics on $S^2$, Comm. Anal. Geom. 13 (2005), no. 2, 333–361. MR 2154822
- P. Maheux and L. Saloff-Coste, Analyse sur les boules d’un opérateur sous-elliptique, Math. Ann. 303 (1995), no. 4, 713–740 (French). MR 1359957, DOI 10.1007/BF01461013
- Vincent Minerbe, On the asymptotic geometry of gravitational instantons, Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), no. 6, 883–924 (English, with English and French summaries). MR 2778451, DOI 10.24033/asens.2135
- V. Minerbe, Rigidity for Multi-Taub-NUT metrics, J. reine angew. Math. 656 (2011), 47–58.
- Rick Miranda, The moduli of Weierstrass fibrations over $\textbf {P}^{1}$, Math. Ann. 255 (1981), no. 3, 379–394. MR 615858, DOI 10.1007/BF01450711
- Rick Miranda, Persson’s list of singular fibers for a rational elliptic surface, Math. Z. 205 (1990), no. 2, 191–211. MR 1076128, DOI 10.1007/BF02571235
- A. Naber, G. Tian, Geometric structures of collapsing Riemannian manifolds, I, preprint, arXiv:0804.2275.
- Johannes Nordström, Deformations of asymptotically cylindrical $G_2$-manifolds, Math. Proc. Cambridge Philos. Soc. 145 (2008), no. 2, 311–348. MR 2442130, DOI 10.1017/S0305004108001333
- Johannes Nordström, Deformations of glued $G_2$-manifolds, Comm. Anal. Geom. 17 (2009), no. 3, 481–503. MR 2550206, DOI 10.4310/CAG.2009.v17.n3.a3
- B. Santoro, Existence of complete Kähler Ricci-flat metrics on crepant resolutions, preprint, arXiv:0902.0595.
- Jian Song and Gang Tian, The Kähler-Ricci flow on surfaces of positive Kodaira dimension, Invent. Math. 170 (2007), no. 3, 609–653. MR 2357504, DOI 10.1007/s00222-007-0076-8
- Gang Tian, Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, Mathematical aspects of string theory (San Diego, Calif., 1986) Adv. Ser. Math. Phys., vol. 1, World Sci. Publishing, Singapore, 1987, pp. 629–646. MR 915841
- Gang Tian, Aspects of metric geometry of four manifolds, Inspired by S. S. Chern, Nankai Tracts Math., vol. 11, World Sci. Publ., Hackensack, NJ, 2006, pp. 381–397. MR 2313343, DOI 10.1142/9789812772688_{0}016
- G. Tian and Shing-Tung Yau, Complete Kähler manifolds with zero Ricci curvature. I, J. Amer. Math. Soc. 3 (1990), no. 3, 579–609. MR 1040196, DOI 10.1090/S0894-0347-1990-1040196-6
- Gang Tian and Shing-Tung Yau, Complete Kähler manifolds with zero Ricci curvature. II, Invent. Math. 106 (1991), no. 1, 27–60. MR 1123371, DOI 10.1007/BF01243902
- Andrey N. Todorov, The Weil-Petersson geometry of the moduli space of $\textrm {SU}(n\geq 3)$ (Calabi-Yau) manifolds. I, Comm. Math. Phys. 126 (1989), no. 2, 325–346. MR 1027500
- Valentino Tosatti, Adiabatic limits of Ricci-flat Kähler metrics, J. Differential Geom. 84 (2010), no. 2, 427–453. MR 2652468
Bibliographic Information
- Hans-Joachim Hein
- Affiliation: Department of Mathematics, Imperial College, London SW7 2AZ, United Kingdom
- MR Author ID: 938594
- ORCID: 0000-0002-3719-9549
- Email: h.hein@imperial.ac.uk
- Received by editor(s): April 24, 2010
- Received by editor(s) in revised form: August 25, 2010, September 30, 2011, October 19, 2011, and October 23, 2011
- Published electronically: November 18, 2011
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 25 (2012), 355-393
- MSC (2010): Primary 53C25, 14J27
- DOI: https://doi.org/10.1090/S0894-0347-2011-00723-6
- MathSciNet review: 2869021