Global well-posedness and scattering for the defocusing, $L^{2}$-critical nonlinear Schrödinger equation when $d \geq 3$
HTML articles powered by AMS MathViewer
- by Benjamin Dodson;
- J. Amer. Math. Soc. 25 (2012), 429-463
- DOI: https://doi.org/10.1090/S0894-0347-2011-00727-3
- Published electronically: December 21, 2011
- PDF | Request permission
Abstract:
In this paper we prove that the defocusing, $d$-dimensional mass critical nonlinear Schrödinger initial value problem is globally well-posed and solutions scatter for $u_{0} \in L^{2}(\mathbf {R}^{d})$, $d \geq 3$. To do this, we will prove a frequency localized interaction Morawetz estimate similar to the estimate made by Colliander, Keel, Staffilani, Takaoka, and Tao. Since we are considering an $L^{2}$-critical initial value problem we will localize to low frequencies. The main new ingredient in this proof is a long time Strichartz estimate for the solution to the first equation given in the paper at high frequencies. The long term Strichartz estimates allow us to estimate the error in the interaction Morawetz estimate caused by localizing to low frequencies.References
- Henri Berestycki and Pierre-Louis Lions, Existence d’ondes solitaires dans des problèmes nonlinéaires du type Klein-Gordon, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 7, A395–A398 (French, with English summary). MR 552061
- J. Bourgain, Refinements of Strichartz’ inequality and applications to $2$D-NLS with critical nonlinearity, Internat. Math. Res. Notices 5 (1998), 253–283. MR 1616917, DOI 10.1155/S1073792898000191
- J. Bourgain, Global solutions of nonlinear Schrödinger equations, American Mathematical Society Colloquium Publications, vol. 46, American Mathematical Society, Providence, RI, 1999. MR 1691575, DOI 10.1090/coll/046
- J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc. 12 (1999), no. 1, 145–171. MR 1626257, DOI 10.1090/S0894-0347-99-00283-0
- H. Brezis and J.-M. Coron, Convergence of solutions of $H$-systems or how to blow bubbles, Arch. Rational Mech. Anal. 89 (1985), no. 1, 21–56. MR 784102, DOI 10.1007/BF00281744
- Thierry Cazenave and Fred B. Weissler, The Cauchy problem for the nonlinear Schrödinger equation in $H^1$, Manuscripta Math. 61 (1988), no. 4, 477–494. MR 952091, DOI 10.1007/BF01258601
- Thierry Cazenave and Fred B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Anal. 14 (1990), no. 10, 807–836. MR 1055532, DOI 10.1016/0362-546X(90)90023-A
- James Colliander, Manoussos Grillakis, and Nikolaos Tzirakis, Improved interaction Morawetz inequalities for the cubic nonlinear Schrödinger equation on $\Bbb R^2$, Int. Math. Res. Not. IMRN 23 (2007), Art. ID rnm090, 30. MR 2377216
- J. Colliander, M. Grillakis, and N. Tzirakis, Tensor products and correlation estimates with applications to nonlinear Schrödinger equations, Comm. Pure Appl. Math. 62 (2009), no. 7, 920–968. MR 2527809, DOI 10.1002/cpa.20278
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation, Math. Res. Lett. 9 (2002), no. 5-6, 659–682. MR 1906069, DOI 10.4310/MRL.2002.v9.n5.a9
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on $\Bbb R^3$, Comm. Pure Appl. Math. 57 (2004), no. 8, 987–1014. MR 2053757, DOI 10.1002/cpa.20029
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $\Bbb R^3$, Ann. of Math. (2) 167 (2008), no. 3, 767–865. MR 2415387, DOI 10.4007/annals.2008.167.767
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Resonant decompositions and the $I$-method for the cubic nonlinear Schrödinger equation on $\Bbb R^2$, Discrete Contin. Dyn. Syst. 21 (2008), no. 3, 665–686. MR 2399431, DOI 10.3934/dcds.2008.21.665
- James Colliander and Tristan Roy, Bootstrapped Morawetz estimates and resonant decomposition for low regularity global solutions of cubic NLS on $\Bbb R^2$, Commun. Pure Appl. Anal. 10 (2011), no. 2, 397–414. MR 2754279, DOI 10.3934/cpaa.2011.10.397
- Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, and Nikolaos Tzirakis, Global well-posedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions, Commun. Pure Appl. Anal. 6 (2007), no. 4, 1023–1041. MR 2341818, DOI 10.3934/cpaa.2007.6.1023
- Daniela de Silva, Nataša Pavlović, Gigliola Staffilani, and Nikolaos Tzirakis, Global well-posedness and polynomial bounds for the defocusing $L^2$-critical nonlinear Schrödinger equation in $\Bbb R$, Comm. Partial Differential Equations 33 (2008), no. 7-9, 1395–1429. MR 2450163, DOI 10.1080/03605300701588839
- B. Dodson, Almost Morawetz estimates and global well-posedness for the defocusing ${L}^2$-critical nonlinear Schrödinger equation in higher dimensions, arXiv:0909.4332v1.
- Benjamin Dodson, Improved almost Morawetz estimates for the cubic nonlinear Schrödinger equation, Commun. Pure Appl. Anal. 10 (2011), no. 1, 127–140. MR 2746530, DOI 10.3934/cpaa.2011.10.127
- Manoussos G. Grillakis, On nonlinear Schrödinger equations, Comm. Partial Differential Equations 25 (2000), no. 9-10, 1827–1844. MR 1778782, DOI 10.1080/03605300008821569
- Markus Keel and Terence Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), no. 5, 955–980. MR 1646048
- Carlos E. Kenig and Frank Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math. 166 (2006), no. 3, 645–675. MR 2257393, DOI 10.1007/s00222-006-0011-4
- Carlos E. Kenig and Frank Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math. 201 (2008), no. 2, 147–212. MR 2461508, DOI 10.1007/s11511-008-0031-6
- Carlos E. Kenig and Frank Merle, Scattering for $\dot H^{1/2}$ bounded solutions to the cubic, defocusing NLS in 3 dimensions, Trans. Amer. Math. Soc. 362 (2010), no. 4, 1937–1962. MR 2574882, DOI 10.1090/S0002-9947-09-04722-9
- Sahbi Keraani, On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations 175 (2001), no. 2, 353–392. MR 1855973, DOI 10.1006/jdeq.2000.3951
- Sahbi Keraani, On the blow up phenomenon of the critical nonlinear Schrödinger equation, J. Funct. Anal. 235 (2006), no. 1, 171–192. MR 2216444, DOI 10.1016/j.jfa.2005.10.005
- Rowan Killip, Terence Tao, and Monica Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS) 11 (2009), no. 6, 1203–1258. MR 2557134, DOI 10.4171/JEMS/180
- R. Killip and M. Visan, Global well-posedness and scattering for the defocusing quintic NLS in three dimensions, arXiv:1102.1192v1.
- —, Nonlinear Schrödinger equations at critical regularity, Clay Lecture Notes.
- Rowan Killip and Monica Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math. 132 (2010), no. 2, 361–424. MR 2654778, DOI 10.1353/ajm.0.0107
- Rowan Killip, Monica Visan, and Xiaoyi Zhang, The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher, Anal. PDE 1 (2008), no. 2, 229–266. MR 2472890, DOI 10.2140/apde.2008.1.229
- Takayoshi Ogawa and Yoshio Tsutsumi, Blow-up of $H^1$ solution for the nonlinear Schrödinger equation, J. Differential Equations 92 (1991), no. 2, 317–330. MR 1120908, DOI 10.1016/0022-0396(91)90052-B
- Takayoshi Ogawa and Yoshio Tsutsumi, Blow-up of $H^1$ solutions for the one-dimensional nonlinear Schrödinger equation with critical power nonlinearity, Proc. Amer. Math. Soc. 111 (1991), no. 2, 487–496. MR 1045145, DOI 10.1090/S0002-9939-1991-1045145-5
- T. Ozawa and Y. Tsutsumi, Space-time estimates for null gauge forms and nonlinear Schrödinger equations, Differential Integral Equations 11 (1998), no. 2, 201–222. MR 1741843
- Fabrice Planchon and Luis Vega, Bilinear virial identities and applications, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 2, 261–290 (English, with English and French summaries). MR 2518079, DOI 10.24033/asens.2096
- E. Ryckman and M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $\Bbb R^{1+4}$, Amer. J. Math. 129 (2007), no. 1, 1–60. MR 2288737, DOI 10.1353/ajm.2007.0004
- Shuanglin Shao, Sharp linear and bilinear restriction estimates for paraboloids in the cylindrically symmetric case, Rev. Mat. Iberoam. 25 (2009), no. 3, 1127–1168. MR 2590695, DOI 10.4171/RMI/591
- Christopher D. Sogge, Fourier integrals in classical analysis, Cambridge Tracts in Mathematics, vol. 105, Cambridge University Press, Cambridge, 1993. MR 1205579, DOI 10.1017/CBO9780511530029
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Terence Tao, Global regularity of wave maps. I. Small critical Sobolev norm in high dimension, Internat. Math. Res. Notices 6 (2001), 299–328. MR 1820329, DOI 10.1155/S1073792801000150
- Terence Tao, Global regularity of wave maps. II. Small energy in two dimensions, Comm. Math. Phys. 224 (2001), no. 2, 443–544. MR 1869874, DOI 10.1007/PL00005588
- Terence Tao, Global well-posedness and scattering for the higher-dimensional energy-critical nonlinear Schrödinger equation for radial data, New York J. Math. 11 (2005), 57–80. MR 2154347
- Terence Tao, Nonlinear dispersive equations, CBMS Regional Conference Series in Mathematics, vol. 106, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. Local and global analysis. MR 2233925, DOI 10.1090/cbms/106
- Terence Tao, Monica Visan, and Xiaoyi Zhang, Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions, Duke Math. J. 140 (2007), no. 1, 165–202. MR 2355070, DOI 10.1215/S0012-7094-07-14015-8
- Terence Tao, Monica Visan, and Xiaoyi Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1281–1343. MR 2354495, DOI 10.1080/03605300701588805
- Terence Tao, Monica Visan, and Xiaoyi Zhang, Minimal-mass blowup solutions of the mass-critical NLS, Forum Math. 20 (2008), no. 5, 881–919. MR 2445122, DOI 10.1515/FORUM.2008.042
- Michael E. Taylor, Pseudodifferential operators and nonlinear PDE, Progress in Mathematics, vol. 100, Birkhäuser Boston, Inc., Boston, MA, 1991. MR 1121019, DOI 10.1007/978-1-4612-0431-2
- Michael E. Taylor, Partial differential equations, Texts in Applied Mathematics, vol. 23, Springer-Verlag, New York, 1996. Basic theory. MR 1395147, DOI 10.1007/978-1-4684-9320-7
- Michael E. Taylor, Tools for PDE, Mathematical Surveys and Monographs, vol. 81, American Mathematical Society, Providence, RI, 2000. Pseudodifferential operators, paradifferential operators, and layer potentials. MR 1766415, DOI 10.1090/surv/081
- M. Visan, Global well-posedness and scattering for the defocusing cubic NLS in four dimensions, arXiv:1011.1526v1.
- Monica Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J. 138 (2007), no. 2, 281–374. MR 2318286, DOI 10.1215/S0012-7094-07-13825-0
Bibliographic Information
- Benjamin Dodson
- Affiliation: Department of Mathematics, University of California, Berkeley, 970 Evans Hall 3840, Berkeley, California 94720-3840
- MR Author ID: 891326
- Email: benjadod@math.berkeley.edu
- Received by editor(s): August 25, 2010
- Received by editor(s) in revised form: October 25, 2010, May 20, 2011, September 30, 2011, and November 7, 2011
- Published electronically: December 21, 2011
- Additional Notes: The author was supported by the National Science Foundation postdoctoral fellowship DMS-1103914 during some of the writing of this paper.
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 25 (2012), 429-463
- MSC (2010): Primary 35Q55
- DOI: https://doi.org/10.1090/S0894-0347-2011-00727-3
- MathSciNet review: 2869023