Regularity and free boundary regularity for the $p$-Laplace operator in Reifenberg flat and Ahlfors regular domains
HTML articles powered by AMS MathViewer
- by John L. Lewis and Kaj Nyström;
- J. Amer. Math. Soc. 25 (2012), 827-862
- DOI: https://doi.org/10.1090/S0894-0347-2011-00726-1
- Published electronically: December 8, 2011
- PDF | Request permission
Abstract:
In this paper we solve several problems concerning regularity and free boundary regularity, below the continuous threshold, for positive solutions to the $p$-Laplace equation, $1 < p < \infty$, vanishing on a portion of the boundary of an Ahlfors regular NTA-domain. In Theorem 1 of our paper we show that if $\Omega \subset \mathbf {R}^{n}, n \geq 2,$ is an Ahlfors regular NTA-domain and $u$ is a positive $p$-harmonic function in $\Omega \cap B (w, 4r)$, with continuous boundary value 0 on $\partial \Omega \cap B (w, 4r)$, then $\nabla u (x) \to \nabla u (y)$ nontangentially as $x \rightarrow y \in \partial \Omega \cap B (w, 4r),$ almost everywhere with respect to surface area, $\sigma ,$ on $\partial \Omega \cap B (w, 4 r).$ Moreover, $\log | \nabla u |$ is of bounded mean oscillation on $\partial \Omega \cap B (w, r)$ with $\| \log | \nabla u |\|_{\mathrm {BMO} (\partial \Omega \cap B(w, r))} \leq c$. If, in addition, $\Omega$ is Reifenberg flat with vanishing constant and $n\in \mathrm {VMO}(\partial \Omega \cap B(w, 4r))$, where $n$ denotes the unit inner normal to $\partial \Omega$ in the measure-theoretic sense, then in Theorem 2 we prove that $\log | \nabla u | \in \mathrm {VMO}(\partial \Omega \cap B(w, r))$. In Theorem 3 we prove the following converse to Theorem 2. Suppose $u$ is as in Theorem 1, $\log | \nabla u | \in \mathrm {VMO}(\partial \Omega \cap B(w, r))$, and that $\partial \Omega \cap B (w, r)$ is $(\delta , r_0)$-Reifenberg flat. Then there exists $\bar \delta = \bar \delta (p, n)$ such that if $0 < \delta \leq \bar \delta ,$ then $\partial \Omega \cap B(w, r/2)$ is Reifenberg flat with vanishing constant and $n\in \mathrm {VMO}(\partial \Omega \cap B(w, r/2))$. Finally, in Theorem 4 we establish a two-phase version of Theorem 3 without the smallness assumption on $\delta .$References
- Hans Wilhelm Alt, Luis A. Caffarelli, and Avner Friedman, A free boundary problem for quasilinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), no. 1, 1–44. MR 752578
- M. Badger, Null sets of harmonic measure on NTA domains: Lipschitz approximation revisited, arXiv:1003.4547v3
- M. Badger, Harmonic polynomials and tangent measures of harmonic measure, Rev. Mat. Iberoamericana 27 (2011), no. 3, 841–870.
- Björn Bennewitz and John L. Lewis, On the dimension of $p$-harmonic measure, Ann. Acad. Sci. Fenn. Math. 30 (2005), no. 2, 459–505. MR 2173375
- Luis A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. I. Lipschitz free boundaries are $C^{1,\alpha }$, Rev. Mat. Iberoamericana 3 (1987), no. 2, 139–162. MR 990856, DOI 10.4171/RMI/47
- Luis A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. II. Flat free boundaries are Lipschitz, Comm. Pure Appl. Math. 42 (1989), no. 1, 55–78. MR 973745, DOI 10.1002/cpa.3160420105
- L. Caffarelli, E. Fabes, S. Mortola, and S. Salsa, Boundary behavior of nonnegative solutions of elliptic operators in divergence form, Indiana Univ. Math. J. 30 (1981), no. 4, 621–640. MR 620271, DOI 10.1512/iumj.1981.30.30049
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- Luca Capogna, Carlos E. Kenig, and Loredana Lanzani, Harmonic measure, University Lecture Series, vol. 35, American Mathematical Society, Providence, RI, 2005. Geometric and analytic points of view. MR 2139304, DOI 10.1090/ulect/035
- Björn E. J. Dahlberg, Estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), no. 3, 275–288. MR 466593, DOI 10.1007/BF00280445
- G. David and D. Jerison, Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals, Indiana Univ. Math. J. 39 (1990), no. 3, 831–845. MR 1078740, DOI 10.1512/iumj.1990.39.39040
- Donatella Danielli and Arshak Petrosyan, A minimum problem with free boundary for a degenerate quasilinear operator, Calc. Var. Partial Differential Equations 23 (2005), no. 1, 97–124. MR 2133664, DOI 10.1007/s00526-004-0294-5
- Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
- David Jerison, Regularity of the Poisson kernel and free boundary problems, Colloq. Math. 60/61 (1990), no. 2, 547–568. MR 1096396, DOI 10.4064/cm-60-61-2-547-568
- David S. Jerison and Carlos E. Kenig, The logarithm of the Poisson kernel of a $C^{1}$ domain has vanishing mean oscillation, Trans. Amer. Math. Soc. 273 (1982), no. 2, 781–794. MR 667174, DOI 10.1090/S0002-9947-1982-0667174-2
- David S. Jerison and Carlos E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. in Math. 46 (1982), no. 1, 80–147. MR 676988, DOI 10.1016/0001-8708(82)90055-X
- Carlos E. Kenig and Tatiana Toro, Harmonic measure on locally flat domains, Duke Math. J. 87 (1997), no. 3, 509–551. MR 1446617, DOI 10.1215/S0012-7094-97-08717-2
- Carlos E. Kenig and Tatiana Toro, Free boundary regularity for harmonic measures and Poisson kernels, Ann. of Math. (2) 150 (1999), no. 2, 369–454. MR 1726699, DOI 10.2307/121086
- Carlos E. Kenig and Tatiana Toro, Poisson kernel characterization of Reifenberg flat chord arc domains, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 3, 323–401 (English, with English and French summaries). MR 1977823, DOI 10.1016/S0012-9593(03)00012-0
- Carlos Kenig and Tatiana Toro, Free boundary regularity below the continuous threshold: 2-phase problems, J. Reine Angew. Math. 596 (2006), 1–44. MR 2254803, DOI 10.1515/CRELLE.2006.050
- C. Kenig, D. Preiss, and T. Toro, Boundary structure and size in terms of interior and exterior harmonic measures in higher dimensions, J. Amer. Math. Soc. 22 (2009), no. 3, 771–796. MR 2505300, DOI 10.1090/S0894-0347-08-00601-2
- M. Lavrent′ev, Boundary problems in the theory of univalent functions, Amer. Math. Soc. Transl. (2) 32 (1963), 1–35. MR 155970
- John L. Lewis, Uniformly fat sets, Trans. Amer. Math. Soc. 308 (1988), no. 1, 177–196. MR 946438, DOI 10.1090/S0002-9947-1988-0946438-4
- John L. Lewis and Kaj Nyström, Boundary behaviour for $p$ harmonic functions in Lipschitz and starlike Lipschitz ring domains, Ann. Sci. École Norm. Sup. (4) 40 (2007), no. 5, 765–813 (English, with English and French summaries). MR 2382861, DOI 10.1016/j.ansens.2007.09.001
- John Lewis and Kaj Nyström, Boundary behavior and the Martin boundary problem for $p$ harmonic functions in Lipschitz domains, Ann. of Math. (2) 172 (2010), no. 3, 1907–1948. MR 2726103, DOI 10.4007/annals.2010.172.1907
- John L. Lewis and Kaj Nyström, Regularity and free boundary regularity for the $p$ Laplacian in Lipschitz and $C^1$ domains, Ann. Acad. Sci. Fenn. Math. 33 (2008), no. 2, 523–548. MR 2431379
- John L. Lewis and Kaj Nyström, New results for $p$ harmonic functions, Pure Appl. Math. Q. 7 (2011), no. 2, Special Issue: In honor of Frederick W. Gehring, 345–363. MR 2815383, DOI 10.4310/PAMQ.2011.v7.n2.a4
- John L. Lewis and Kaj Nyström, Boundary behaviour of $p$-harmonic functions in domains beyond Lipschitz domains, Adv. Calc. Var. 1 (2008), no. 2, 133–170. MR 2427450, DOI 10.1515/ACV.2008.005
- John L. Lewis and Kaj Nyström, Regularity of Lipschitz free boundaries in two-phase problems for the $p$-Laplace operator, Adv. Math. 225 (2010), no. 5, 2565–2597. MR 2680176, DOI 10.1016/j.aim.2010.05.005
- J. Lewis and K. Nyström, Regularity of flat free boundaries in two-phase problems for the $p$-Laplace operator, to appear in Annales de l’Institute Henri Poincaré Analyse Non Linéaire.
- Niklas L. P. Lundström and Kaj Nyström, On a two-phase free boundary condition for $p$-harmonic measures, Manuscripta Math. 129 (2009), no. 2, 231–249. MR 2505803, DOI 10.1007/s00229-009-0257-4
- J. Lewis, K. Nyström, and A. Vogel, On the dimension of $p$-harmonic measure in space, submitted.
- John L. Lewis and Andrew L. Vogel, Uniqueness in a free boundary problem, Comm. Partial Differential Equations 31 (2006), no. 10-12, 1591–1614. MR 2273966, DOI 10.1080/03605300500455909
- Emmanouil Milakis and Tatiana Toro, Divergence form operators in Reifenberg flat domains, Math. Z. 264 (2010), no. 1, 15–41. MR 2564930, DOI 10.1007/s00209-008-0450-2
- Ch. Pommerenke, On univalent functions, Bloch functions and VMOA, Math. Ann. 236 (1978), no. 3, 199–208. MR 492206, DOI 10.1007/BF01351365
- Stephen Semmes, Analysis vs. geometry on a class of rectifiable hypersurfaces in $\textbf {R}^n$, Indiana Univ. Math. J. 39 (1990), no. 4, 1005–1035. MR 1087183, DOI 10.1512/iumj.1990.39.39048
- Stephen Semmes, Chord-arc surfaces with small constant. I, Adv. Math. 85 (1991), no. 2, 198–223. MR 1093006, DOI 10.1016/0001-8708(91)90056-D
- Stephen Semmes, Chord-arc surfaces with small constant. II. Good parameterizations, Adv. Math. 88 (1991), no. 2, 170–199. MR 1120612, DOI 10.1016/0001-8708(91)90007-T
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
Bibliographic Information
- John L. Lewis
- Affiliation: Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506-0027
- Email: john@ms.uky.edu
- Kaj Nyström
- Affiliation: Department of Mathematics, Uppsala University, S-751 06 Uppsala, Sweden
- Email: kaj.nystrom@math.uu.se
- Received by editor(s): June 13, 2011
- Received by editor(s) in revised form: July 21, 2011
- Published electronically: December 8, 2011
- Additional Notes: The first author was partially supported by NSF DMS-0900291
The second author was partially supported by grant VR-70629701 from the Swedish research council VR - © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 25 (2012), 827-862
- MSC (2010): Primary 35J25, 35J70
- DOI: https://doi.org/10.1090/S0894-0347-2011-00726-1
- MathSciNet review: 2904575