Regularity and free boundary regularity for the $p$-Laplace operator in Reifenberg flat and Ahlfors regular domains
Authors:
John L. Lewis and Kaj Nyström
Journal:
J. Amer. Math. Soc. 25 (2012), 827-862
MSC (2010):
Primary 35J25, 35J70
DOI:
https://doi.org/10.1090/S0894-0347-2011-00726-1
Published electronically:
December 8, 2011
MathSciNet review:
2904575
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we solve several problems concerning regularity and free boundary regularity, below the continuous threshold, for positive solutions to the $p$-Laplace equation, $1 < p < \infty$, vanishing on a portion of the boundary of an Ahlfors regular NTA-domain. In Theorem 1 of our paper we show that if $\Omega \subset \mathbf {R}^{n}, n \geq 2,$ is an Ahlfors regular NTA-domain and $u$ is a positive $p$-harmonic function in $\Omega \cap B (w, 4r)$, with continuous boundary value 0 on $\partial \Omega \cap B (w, 4r)$, then $\nabla u (x) \to \nabla u (y)$ nontangentially as $x \rightarrow y \in \partial \Omega \cap B (w, 4r),$ almost everywhere with respect to surface area, $\sigma ,$ on $\partial \Omega \cap B (w, 4 r).$ Moreover, $\log | \nabla u |$ is of bounded mean oscillation on $\partial \Omega \cap B (w, r)$ with $\| \log | \nabla u |\|_{\mathrm {BMO} (\partial \Omega \cap B(w, r))} \leq c$. If, in addition, $\Omega$ is Reifenberg flat with vanishing constant and $n\in \mathrm {VMO}(\partial \Omega \cap B(w, 4r))$, where $n$ denotes the unit inner normal to $\partial \Omega$ in the measure-theoretic sense, then in Theorem 2 we prove that $\log | \nabla u | \in \mathrm {VMO}(\partial \Omega \cap B(w, r))$. In Theorem 3 we prove the following converse to Theorem 2. Suppose $u$ is as in Theorem 1, $\log | \nabla u | \in \mathrm {VMO}(\partial \Omega \cap B(w, r))$, and that $\partial \Omega \cap B (w, r)$ is $(\delta , r_0)$-Reifenberg flat. Then there exists $\bar \delta = \bar \delta (p, n)$ such that if $0 < \delta \leq \bar \delta ,$ then $\partial \Omega \cap B(w, r/2)$ is Reifenberg flat with vanishing constant and $n\in \mathrm {VMO}(\partial \Omega \cap B(w, r/2))$. Finally, in Theorem 4 we establish a two-phase version of Theorem 3 without the smallness assumption on $\delta .$
- Hans Wilhelm Alt, Luis A. Caffarelli, and Avner Friedman, A free boundary problem for quasilinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), no. 1, 1–44. MR 752578
- M. Badger, Null sets of harmonic measure on NTA domains: Lipschitz approximation revisited, arXiv:1003.4547v3
- M. Badger, Harmonic polynomials and tangent measures of harmonic measure, Rev. Mat. Iberoamericana 27 (2011), no. 3, 841–870.
- Björn Bennewitz and John L. Lewis, On the dimension of $p$-harmonic measure, Ann. Acad. Sci. Fenn. Math. 30 (2005), no. 2, 459–505. MR 2173375
- Luis A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. I. Lipschitz free boundaries are $C^{1,\alpha }$, Rev. Mat. Iberoamericana 3 (1987), no. 2, 139–162. MR 990856, DOI https://doi.org/10.4171/RMI/47
- Luis A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. II. Flat free boundaries are Lipschitz, Comm. Pure Appl. Math. 42 (1989), no. 1, 55–78. MR 973745, DOI https://doi.org/10.1002/cpa.3160420105
- L. Caffarelli, E. Fabes, S. Mortola, and S. Salsa, Boundary behavior of nonnegative solutions of elliptic operators in divergence form, Indiana Univ. Math. J. 30 (1981), no. 4, 621–640. MR 620271, DOI https://doi.org/10.1512/iumj.1981.30.30049
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI https://doi.org/10.4064/sm-51-3-241-250
- Luca Capogna, Carlos E. Kenig, and Loredana Lanzani, Harmonic measure, University Lecture Series, vol. 35, American Mathematical Society, Providence, RI, 2005. Geometric and analytic points of view. MR 2139304
- Björn E. J. Dahlberg, Estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), no. 3, 275–288. MR 466593, DOI https://doi.org/10.1007/BF00280445
- G. David and D. Jerison, Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals, Indiana Univ. Math. J. 39 (1990), no. 3, 831–845. MR 1078740, DOI https://doi.org/10.1512/iumj.1990.39.39040
- Donatella Danielli and Arshak Petrosyan, A minimum problem with free boundary for a degenerate quasilinear operator, Calc. Var. Partial Differential Equations 23 (2005), no. 1, 97–124. MR 2133664, DOI https://doi.org/10.1007/s00526-004-0294-5
- Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660
- David Jerison, Regularity of the Poisson kernel and free boundary problems, Colloq. Math. 60/61 (1990), no. 2, 547–568. MR 1096396, DOI https://doi.org/10.4064/cm-60-61-2-547-568
- David S. Jerison and Carlos E. Kenig, The logarithm of the Poisson kernel of a $C^{1}$ domain has vanishing mean oscillation, Trans. Amer. Math. Soc. 273 (1982), no. 2, 781–794. MR 667174, DOI https://doi.org/10.1090/S0002-9947-1982-0667174-2
- David S. Jerison and Carlos E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. in Math. 46 (1982), no. 1, 80–147. MR 676988, DOI https://doi.org/10.1016/0001-8708%2882%2990055-X
- Carlos E. Kenig and Tatiana Toro, Harmonic measure on locally flat domains, Duke Math. J. 87 (1997), no. 3, 509–551. MR 1446617, DOI https://doi.org/10.1215/S0012-7094-97-08717-2
- Carlos E. Kenig and Tatiana Toro, Free boundary regularity for harmonic measures and Poisson kernels, Ann. of Math. (2) 150 (1999), no. 2, 369–454. MR 1726699, DOI https://doi.org/10.2307/121086
- Carlos E. Kenig and Tatiana Toro, Poisson kernel characterization of Reifenberg flat chord arc domains, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 3, 323–401 (English, with English and French summaries). MR 1977823, DOI https://doi.org/10.1016/S0012-9593%2803%2900012-0
- Carlos Kenig and Tatiana Toro, Free boundary regularity below the continuous threshold: 2-phase problems, J. Reine Angew. Math. 596 (2006), 1–44. MR 2254803, DOI https://doi.org/10.1515/CRELLE.2006.050
- C. Kenig, D. Preiss, and T. Toro, Boundary structure and size in terms of interior and exterior harmonic measures in higher dimensions, J. Amer. Math. Soc. 22 (2009), no. 3, 771–796. MR 2505300, DOI https://doi.org/10.1090/S0894-0347-08-00601-2
- M. Lavrent′ev, Boundary problems in the theory of univalent functions, Amer. Math. Soc. Transl. (2) 32 (1963), 1–35. MR 0155970
- John L. Lewis, Uniformly fat sets, Trans. Amer. Math. Soc. 308 (1988), no. 1, 177–196. MR 946438, DOI https://doi.org/10.1090/S0002-9947-1988-0946438-4
- John L. Lewis and Kaj Nyström, Boundary behaviour for $p$ harmonic functions in Lipschitz and starlike Lipschitz ring domains, Ann. Sci. École Norm. Sup. (4) 40 (2007), no. 5, 765–813 (English, with English and French summaries). MR 2382861, DOI https://doi.org/10.1016/j.ansens.2007.09.001
- John Lewis and Kaj Nyström, Boundary behavior and the Martin boundary problem for $p$ harmonic functions in Lipschitz domains, Ann. of Math. (2) 172 (2010), no. 3, 1907–1948. MR 2726103, DOI https://doi.org/10.4007/annals.2010.172.1907
- John L. Lewis and Kaj Nyström, Regularity and free boundary regularity for the $p$ Laplacian in Lipschitz and $C^1$ domains, Ann. Acad. Sci. Fenn. Math. 33 (2008), no. 2, 523–548. MR 2431379
- John L. Lewis and Kaj Nyström, New results for $p$ harmonic functions, Pure Appl. Math. Q. 7 (2011), no. 2, Special Issue: In honor of Frederick W. Gehring, 345–363. MR 2815383, DOI https://doi.org/10.4310/PAMQ.2011.v7.n2.a4
- John L. Lewis and Kaj Nyström, Boundary behaviour of $p$-harmonic functions in domains beyond Lipschitz domains, Adv. Calc. Var. 1 (2008), no. 2, 133–170. MR 2427450, DOI https://doi.org/10.1515/ACV.2008.005
- John L. Lewis and Kaj Nyström, Regularity of Lipschitz free boundaries in two-phase problems for the $p$-Laplace operator, Adv. Math. 225 (2010), no. 5, 2565–2597. MR 2680176, DOI https://doi.org/10.1016/j.aim.2010.05.005
- J. Lewis and K. Nyström, Regularity of flat free boundaries in two-phase problems for the $p$-Laplace operator, to appear in Annales de l’Institute Henri Poincaré Analyse Non Linéaire.
- Niklas L. P. Lundström and Kaj Nyström, On a two-phase free boundary condition for $p$-harmonic measures, Manuscripta Math. 129 (2009), no. 2, 231–249. MR 2505803, DOI https://doi.org/10.1007/s00229-009-0257-4
- J. Lewis, K. Nyström, and A. Vogel, On the dimension of $p$-harmonic measure in space, submitted.
- John L. Lewis and Andrew L. Vogel, Uniqueness in a free boundary problem, Comm. Partial Differential Equations 31 (2006), no. 10-12, 1591–1614. MR 2273966, DOI https://doi.org/10.1080/03605300500455909
- Emmanouil Milakis and Tatiana Toro, Divergence form operators in Reifenberg flat domains, Math. Z. 264 (2010), no. 1, 15–41. MR 2564930, DOI https://doi.org/10.1007/s00209-008-0450-2
- Ch. Pommerenke, On univalent functions, Bloch functions and VMOA, Math. Ann. 236 (1978), no. 3, 199–208. MR 492206, DOI https://doi.org/10.1007/BF01351365
- Stephen Semmes, Analysis vs. geometry on a class of rectifiable hypersurfaces in ${\bf R}^n$, Indiana Univ. Math. J. 39 (1990), no. 4, 1005–1035. MR 1087183, DOI https://doi.org/10.1512/iumj.1990.39.39048
- Stephen Semmes, Chord-arc surfaces with small constant. I, Adv. Math. 85 (1991), no. 2, 198–223. MR 1093006, DOI https://doi.org/10.1016/0001-8708%2891%2990056-D
- Stephen Semmes, Chord-arc surfaces with small constant. II. Good parameterizations, Adv. Math. 88 (1991), no. 2, 170–199. MR 1120612, DOI https://doi.org/10.1016/0001-8708%2891%2990007-T
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 35J25, 35J70
Retrieve articles in all journals with MSC (2010): 35J25, 35J70
Additional Information
John L. Lewis
Affiliation:
Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506-0027
Email:
john@ms.uky.edu
Kaj Nyström
Affiliation:
Department of Mathematics, Uppsala University, S-751 06 Uppsala, Sweden
Email:
kaj.nystrom@math.uu.se
Keywords:
$p$-harmonic function,
Reifenberg flat domain,
Ahlfors regular domain,
regularity,
free boundary regularity
Received by editor(s):
June 13, 2011
Received by editor(s) in revised form:
July 21, 2011
Published electronically:
December 8, 2011
Additional Notes:
The first author was partially supported by NSF DMS-0900291
The second author was partially supported by grant VR-70629701 from the Swedish research council VR
Article copyright:
© Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.