A generalization of Steinberg’s cross section
HTML articles powered by AMS MathViewer
- by Xuhua He and George Lusztig;
- J. Amer. Math. Soc. 25 (2012), 739-757
- DOI: https://doi.org/10.1090/S0894-0347-2012-00728-0
- Published electronically: January 10, 2012
- PDF | Request permission
Abstract:
Let $G$ be a semisimple group over an algebraically closed field. Steinberg has associated to a Coxeter element $w$ of minimal length $r$ a subvariety $V$ of $G$ isomorphic to an affine space of dimension $r$ which meets the regular unipotent class $Y$ in exactly one point. In this paper this is generalized to the case where $w$ is replaced by any elliptic element in the Weyl group of minimal length $d$ in its conjugacy class, $V$ is replaced by a subvariety $V’$ of $G$ isomorphic to an affine space of dimension $d$, and $Y$ is replaced by a unipotent class $Y’$ of codimension $d$ in such a way that the intersection of $V’$ and $Y’$ is finite.References
- James Ax, Injective endomorphisms of varieties and schemes, Pacific J. Math. 31 (1969), 1–7. MR 251036
- Andrzej Białynicki-Birula and Maxwell Rosenlicht, Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc. 13 (1962), 200–203. MR 140516, DOI 10.1090/S0002-9939-1962-0140516-5
- P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161. MR 393266, DOI 10.2307/1971021
- Meinolf Geck and Götz Pfeiffer, Characters of finite Coxeter groups and Iwahori-Hecke algebras, London Mathematical Society Monographs. New Series, vol. 21, The Clarendon Press, Oxford University Press, New York, 2000. MR 1778802
- Meinolf Geck, Sungsoon Kim, and Götz Pfeiffer, Minimal length elements in twisted conjugacy classes of finite Coxeter groups, J. Algebra 229 (2000), no. 2, 570–600. MR 1769289, DOI 10.1006/jabr.1999.8253
- Meinolf Geck and Jean Michel, “Good” elements of finite Coxeter groups and representations of Iwahori-Hecke algebras, Proc. London Math. Soc. (3) 74 (1997), no. 2, 275–305. MR 1425324, DOI 10.1112/S0024611597000105
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 255. MR 217086
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361 (French). MR 238860
- Xuhua He, Minimal length elements in some double cosets of Coxeter groups, Adv. Math. 215 (2007), no. 2, 469–503. MR 2355597, DOI 10.1016/j.aim.2007.04.005
- George Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1227098
- G. Lusztig, Study of a $\mathbf Z$-form of the coordinate ring of a reductive group, J. Amer. Math. Soc. 22 (2009), no. 3, 739–769. MR 2505299, DOI 10.1090/S0894-0347-08-00603-6
- G. Lusztig, From conjugacy classes in the Weyl group to unipotent classes, Represent. Theory 15 (2011), 494–530. MR 2833465, DOI 10.1090/S1088-4165-2011-00396-4
- G. Lusztig, Elliptic elements in a Weyl group: a homogeneity property, arxiv:1007.5040.
- G. Lusztig, On certain varieties attached to a Weyl group element, Bull. Inst. Math. Acad. Sinica (N.S.) 6 (2011), 377-414.
- Alexey Sevostyanov, Algebraic group analogues of the Slodowy slices and deformations of Poisson $W$-algebras, Int. Math. Res. Not. IMRN 8 (2011), 1880–1925. MR 2806525, DOI 10.1093/imrn/rnq139
- Robert Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49–80. MR 180554
Bibliographic Information
- Xuhua He
- Affiliation: Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong
- George Lusztig
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307
- MR Author ID: 117100
- Received by editor(s): March 14, 2011
- Received by editor(s) in revised form: October 4, 2011, and December 5, 2011
- Published electronically: January 10, 2012
- Additional Notes: The first author was supported in part by HKRGC grant 601409
The second author was supported in part by National Science Foundation grant DMS-0758262 - © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 25 (2012), 739-757
- MSC (2010): Primary 20G99
- DOI: https://doi.org/10.1090/S0894-0347-2012-00728-0
- MathSciNet review: 2904572