A finiteness property of abelian varieties with potentially ordinary good reduction
HTML articles powered by AMS MathViewer
- by Haruzo Hida PDF
- J. Amer. Math. Soc. 25 (2012), 813-826 Request permission
Abstract:
For a prime $p>2$, contrary to super-singular cases, we prove that there are only finitely many twist equivalence classes of non-CM $\mathbb {Q}$-simple abelian varieties of $GL(2)$-type with potentially ordinary reduction modulo $p$ and good reduction everywhere outside $p$.References
- Stephen S. Gelbart, Automorphic forms on adèle groups, Annals of Mathematics Studies, No. 83, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1975. MR 0379375
- David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Published for the Tata Institute of Fundamental Research, Bombay; by Hindustan Book Agency, New Delhi, 2008. With appendices by C. P. Ramanujam and Yuri Manin; Corrected reprint of the second (1974) edition. MR 2514037
- Goro Shimura, Abelian varieties with complex multiplication and modular functions, Princeton Mathematical Series, vol. 46, Princeton University Press, Princeton, NJ, 1998. MR 1492449, DOI 10.1515/9781400883943
- Nicholas M. Katz and Barry Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, vol. 108, Princeton University Press, Princeton, NJ, 1985. MR 772569, DOI 10.1515/9781400881710
- Gary Cornell and Joseph H. Silverman (eds.), Arithmetic geometry, Springer-Verlag, New York, 1986. Papers from the conference held at the University of Connecticut, Storrs, Connecticut, July 30–August 10, 1984. MR 861969, DOI 10.1007/978-1-4613-8655-1
- Alexander F. Brown and Eknath P. Ghate, Dihedral congruence primes and class fields of real quadratic fields, J. Number Theory 95 (2002), no. 1, 14–37. MR 1916078, DOI 10.1006/jnth.2001.2753
- Henri Carayol, Sur les représentations $l$-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 409–468 (French). MR 870690
- A. J. de Jong, Crystalline Dieudonné module theory via formal and rigid geometry, Inst. Hautes Études Sci. Publ. Math. 82 (1995), 5–96 (1996). MR 1383213
- P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 349, Springer, Berlin, 1973, pp. 143–316 (French). MR 0337993
- Jean-Marc Fontaine, Il n’y a pas de variété abélienne sur $\textbf {Z}$, Invent. Math. 81 (1985), no. 3, 515–538 (French). MR 807070, DOI 10.1007/BF01388584
- H. Hida, Geometric Modular Forms and Elliptic Curves, second edition, World Scientific, Singapore, 2011.
- Haruzo Hida, Iwasawa modules attached to congruences of cusp forms, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 2, 231–273. MR 868300
- Haruzo Hida, Galois representations into $\textrm {GL}_2(\textbf {Z}_p[[X]])$ attached to ordinary cusp forms, Invent. Math. 85 (1986), no. 3, 545–613. MR 848685, DOI 10.1007/BF01390329
- Haruzo Hida, Hecke algebras for $\textrm {GL}_1$ and $\textrm {GL}_2$, Séminaire de théorie des nombres, Paris 1984–85, Progr. Math., vol. 63, Birkhäuser Boston, Boston, MA, 1986, pp. 131–163. MR 897346
- Haruzo Hida, Hecke fields of analytic families of modular forms, J. Amer. Math. Soc. 24 (2011), no. 1, 51–80. MR 2726599, DOI 10.1090/S0894-0347-2010-00680-7
- H. Hida, Local indecomposability of Tate modules of non CM abelian varieties with real multiplication, preprint, 2011, 18 pages
- Haruzo Hida, Hilbert modular forms and Iwasawa theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2006. MR 2243770, DOI 10.1093/acprof:oso/9780198571025.001.0001
- Chandrashekhar Khare and Jean-Pierre Wintenberger, Serre’s modularity conjecture. I, Invent. Math. 178 (2009), no. 3, 485–504. MR 2551763, DOI 10.1007/s00222-009-0205-7
- Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, No. 1, Iwanami Shoten Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. Publications of the Mathematical Society of Japan, No. 11. MR 0314766
- Philip Kutzko, The Langlands conjecture for $\textrm {Gl}_{2}$ of a local field, Ann. of Math. (2) 112 (1980), no. 2, 381–412. MR 592296, DOI 10.2307/1971151
- R. P. Langlands, Modular forms and $\ell$-adic representations, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 349, Springer, Berlin, 1973, pp. 361–500. MR 0354617
- Haruzo Hida, Modular forms and Galois cohomology, Cambridge Studies in Advanced Mathematics, vol. 69, Cambridge University Press, Cambridge, 2000. MR 1779182, DOI 10.1017/CBO9780511526046
- Toshitsune Miyake, Modular forms, Springer-Verlag, Berlin, 1989. Translated from the Japanese by Yoshitaka Maeda. MR 1021004, DOI 10.1007/3-540-29593-3
- B. Mazur and A. Wiles, On $p$-adic analytic families of Galois representations, Compositio Math. 59 (1986), no. 2, 231–264. MR 860140
- Pierre Deligne, James S. Milne, Arthur Ogus, and Kuang-yen Shih, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, vol. 900, Springer-Verlag, Berlin-New York, 1982. MR 654325
- Kenneth A. Ribet, Abelian varieties over $\textbf {Q}$ and modular forms, Algebra and topology 1992 (Taejŏn), Korea Adv. Inst. Sci. Tech., Taejŏn, 1992, pp. 53–79. MR 1212980
- Kenneth A. Ribet, Fields of definition of abelian varieties with real multiplication, Arithmetic geometry (Tempe, AZ, 1993) Contemp. Math., vol. 174, Amer. Math. Soc., Providence, RI, 1994, pp. 107–118. MR 1299737, DOI 10.1090/conm/174/01854
- A. J. Scholl, Motives for modular forms, Invent. Math. 100 (1990), no. 2, 419–430. MR 1047142, DOI 10.1007/BF01231194
- Jean-Pierre Serre and John Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492–517. MR 236190, DOI 10.2307/1970722
- Richard Taylor, On the meromorphic continuation of degree two $L$-functions, Doc. Math. Extra Vol. (2006), 729–779. MR 2290604
- André Weil, Exercices dyadiques, Invent. Math. 27 (1974), 1–22 (French). MR 379445, DOI 10.1007/BF01389962
Additional Information
- Haruzo Hida
- Affiliation: Department of Mathematics, UCLA, Los Angeles, California 90095-1555
- MR Author ID: 213427
- Email: hida@math.ucla.edu
- Received by editor(s): May 24, 2011
- Received by editor(s) in revised form: December 3, 2011
- Published electronically: January 25, 2012
- Additional Notes: The author is partially supported by the NSF grants DMS 0753991 and DMS 0854949 and by the Clay Mathematics Institute as a Senior Scholar while preparing this work.
- © Copyright 2012 American Mathematical Society
- Journal: J. Amer. Math. Soc. 25 (2012), 813-826
- MSC (2010): Primary 14K02, 11G05, 11G10; Secondary 11F25, 11F33, 11F80
- DOI: https://doi.org/10.1090/S0894-0347-2012-00730-9
- MathSciNet review: 2904574