Algebraic $K$-theory via binary complexes
Author:
Daniel R. Grayson
Journal:
J. Amer. Math. Soc. 25 (2012), 1149-1167
MSC (2010):
Primary 19D99
DOI:
https://doi.org/10.1090/S0894-0347-2012-00743-7
Published electronically:
June 14, 2012
MathSciNet review:
2947948
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Motivated by work of Nenashev on $K_1$, we introduce acyclic binary multicomplexes and use them to provide generators and relations for the Quillen $K$-groups of an arbitrary exact category.
- A. K. Bousfield and E. M. Friedlander, Homotopy theory of $\Gamma $-spaces, spectra, and bisimplicial sets, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II, Lecture Notes in Math., vol. 658, Springer, Berlin, 1978, pp. 80–130. MR 513569
- Denis-Charles Cisinski, Théorèmes de cofinalité en $k$-théorie, d’après Thomason, available at http://www.math.univ-toulouse.fr/~dcisinsk/cofdev.dvi, December 2002.
- Daniel R. Grayson, Localization for flat modules in algebraic $K$-theory, J. Algebra 61 (1979), no. 2, 463–496. MR 559850, DOI https://doi.org/10.1016/0021-8693%2879%2990290-4
- Daniel R. Grayson, Exact sequences in algebraic $K$-theory, Illinois J. Math. 31 (1987), no. 4, 598–617. MR 909785
- Daniel R. Grayson, Adams operations on higher $K$-theory, $K$-Theory 6 (1992), no. 2, 97–111. MR 1187703, DOI https://doi.org/10.1007/BF01771009
- Daniel R. Grayson, Weight filtrations via commuting automorphisms, $K$-Theory 9 (1995), no. 2, 139–172. MR 1340843, DOI https://doi.org/10.1007/BF00961457
- John Milnor, Introduction to algebraic $K$-theory, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. Annals of Mathematics Studies, No. 72. MR 0349811
- Alexander Nenashev, Double short exact sequences produce all elements of Quillen’s $K_1$, Algebraic $K$-theory (Poznań, 1995) Contemp. Math., vol. 199, Amer. Math. Soc., Providence, RI, 1996, pp. 151–160. MR 1409623, DOI https://doi.org/10.1090/conm/199/02478
- Alexander Nenashev, Double short exact sequences and $K_1$ of an exact category, $K$-Theory 14 (1998), no. 1, 23–41. MR 1621690, DOI https://doi.org/10.1023/A%3A1007722523594
- A. Nenashev, $K_1$ by generators and relations, J. Pure Appl. Algebra 131 (1998), no. 2, 195–212. MR 1637539, DOI https://doi.org/10.1016/S0022-4049%2897%2900056-X
- Daniel Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 85–147. Lecture Notes in Math., Vol. 341. MR 0338129
- Marco Schlichting, Higher algebraic $K$-theory, Topics in algebraic and topological $K$-theory, Lecture Notes in Math., vol. 2008, Springer, Berlin, 2011, pp. 167–241. MR 2762556, DOI https://doi.org/10.1007/978-3-642-15708-0_4
- Clayton Sherman, On $K_1$ of an abelian category, J. Algebra 163 (1994), no. 2, 568–582. MR 1262719, DOI https://doi.org/10.1006/jabr.1994.1032
- Clayton Sherman, On $K_1$ of an exact category, $K$-Theory 14 (1998), no. 1, 1–22. MR 1621689, DOI https://doi.org/10.1023/A%3A1007718422686
- ---, $K_1$ of Exact Categories by Mirror Image Sequences, J. $K$-Theory (2012), available online, May, 2012.
- Michael R. Stein and R. Keith Dennis, $K_{2}$ of radical ideals and semi-local rings revisited, Algebraic $K$-theory, II: “Classical” algebraic $K$-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 281–303. Lecture Notes in Math. Vol. 342. MR 0406998
- R. W. Thomason and Thomas Trobaugh, Higher algebraic $K$-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 247–435. MR 1106918, DOI https://doi.org/10.1007/978-0-8176-4576-2_10
- Friedhelm Waldhausen, Algebraic $K$-theory of spaces, Algebraic and geometric topology (New Brunswick, N.J., 1983) Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 318–419. MR 802796, DOI https://doi.org/10.1007/BFb0074449
Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 19D99
Retrieve articles in all journals with MSC (2010): 19D99
Additional Information
Daniel R. Grayson
MR Author ID:
76410
Email:
drg@illinois.edu
Received by editor(s):
October 21, 2011
Received by editor(s) in revised form:
May 11, 2012
Published electronically:
June 14, 2012
Additional Notes:
The author was supported by the National Science Foundation under grants NSF DMS 08-10948 and NSF DMS 10-02171
Dedicated:
This paper is dedicated to the memory of Daniel Quillen.
Article copyright:
© Copyright 2012
Daniel Grayson; dedicated 2022 to the public domain