Algebraic $K$-theory via binary complexes
HTML articles powered by AMS MathViewer
- by Daniel R. Grayson PDF
- J. Amer. Math. Soc. 25 (2012), 1149-1167
Abstract:
Motivated by work of Nenashev on $K_1$, we introduce acyclic binary multicomplexes and use them to provide generators and relations for the Quillen $K$-groups of an arbitrary exact category.References
- A. K. Bousfield and E. M. Friedlander, Homotopy theory of $\Gamma$-spaces, spectra, and bisimplicial sets, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977) Lecture Notes in Math., vol. 658, Springer, Berlin, 1978, pp. 80–130. MR 513569
- Denis-Charles Cisinski, Théorèmes de cofinalité en $k$-théorie, d’après Thomason, available at http://www.math.univ-toulouse.fr/~dcisinsk/cofdev.dvi, December 2002.
- Daniel R. Grayson, Localization for flat modules in algebraic $K$-theory, J. Algebra 61 (1979), no. 2, 463–496. MR 559850, DOI 10.1016/0021-8693(79)90290-4
- Daniel R. Grayson, Exact sequences in algebraic $K$-theory, Illinois J. Math. 31 (1987), no. 4, 598–617. MR 909785
- Daniel R. Grayson, Adams operations on higher $K$-theory, $K$-Theory 6 (1992), no. 2, 97–111. MR 1187703, DOI 10.1007/BF01771009
- Daniel R. Grayson, Weight filtrations via commuting automorphisms, $K$-Theory 9 (1995), no. 2, 139–172. MR 1340843, DOI 10.1007/BF00961457
- John Milnor, Introduction to algebraic $K$-theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR 0349811
- Alexander Nenashev, Double short exact sequences produce all elements of Quillen’s $K_1$, Algebraic $K$-theory (Poznań, 1995) Contemp. Math., vol. 199, Amer. Math. Soc., Providence, RI, 1996, pp. 151–160. MR 1409623, DOI 10.1090/conm/199/02478
- Alexander Nenashev, Double short exact sequences and $K_1$ of an exact category, $K$-Theory 14 (1998), no. 1, 23–41. MR 1621690, DOI 10.1023/A:1007722523594
- A. Nenashev, $K_1$ by generators and relations, J. Pure Appl. Algebra 131 (1998), no. 2, 195–212. MR 1637539, DOI 10.1016/S0022-4049(97)00056-X
- Daniel Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 85–147. MR 0338129
- Marco Schlichting, Higher algebraic $K$-theory, Topics in algebraic and topological $K$-theory, Lecture Notes in Math., vol. 2008, Springer, Berlin, 2011, pp. 167–241. MR 2762556, DOI 10.1007/978-3-642-15708-0_{4}
- Clayton Sherman, On $K_1$ of an abelian category, J. Algebra 163 (1994), no. 2, 568–582. MR 1262719, DOI 10.1006/jabr.1994.1032
- Clayton Sherman, On $K_1$ of an exact category, $K$-Theory 14 (1998), no. 1, 1–22. MR 1621689, DOI 10.1023/A:1007718422686
- —, $K_1$ of Exact Categories by Mirror Image Sequences, J. $K$-Theory (2012), available online, May, 2012.
- Michael R. Stein and R. Keith Dennis, $K_{2}$ of radical ideals and semi-local rings revisited, Algebraic $K$-theory, II: “Classical” algebraic $K$-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 342, Springer, Berlin, 1973, pp. 281–303. MR 0406998
- R. W. Thomason and Thomas Trobaugh, Higher algebraic $K$-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 247–435. MR 1106918, DOI 10.1007/978-0-8176-4576-2_{1}0
- Friedhelm Waldhausen, Algebraic $K$-theory of spaces, Algebraic and geometric topology (New Brunswick, N.J., 1983) Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 318–419. MR 802796, DOI 10.1007/BFb0074449
Additional Information
- Daniel R. Grayson
- MR Author ID: 76410
- Email: drg@illinois.edu
- Received by editor(s): October 21, 2011
- Received by editor(s) in revised form: May 11, 2012
- Published electronically: June 14, 2012
- Additional Notes: The author was supported by the National Science Foundation under grants NSF DMS 08-10948 and NSF DMS 10-02171
- © Copyright 2012 Daniel Grayson; dedicated 2022 to the public domain
- Journal: J. Amer. Math. Soc. 25 (2012), 1149-1167
- MSC (2010): Primary 19D99
- DOI: https://doi.org/10.1090/S0894-0347-2012-00743-7
- MathSciNet review: 2947948
Dedicated: This paper is dedicated to the memory of Daniel Quillen.