The geometry of the disk complex
Authors:
Howard Masur and Saul Schleimer
Journal:
J. Amer. Math. Soc. 26 (2013), 1-62
MSC (2010):
Primary 57M50
DOI:
https://doi.org/10.1090/S0894-0347-2012-00742-5
Published electronically:
August 22, 2012
MathSciNet review:
2983005
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We give a distance estimate for the disk complex. We use the distance estimate to prove that the disk complex is Gromov hyperbolic. As another application of our techniques, we find an algorithm which computes the Hempel distance of a Heegaard splitting, up to an error depending only on the genus.
- Jason Behrstock. Asymptotic geometry of the mapping class group and Teichmüller space. Ph.D. thesis, SUNY Stony Brook, 2004. http://www.math.columbia.edu/$\sim$jason/thesis.pdf.
- Jason Behrstock, Cornelia Druţu, and Lee Mosher, Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity, Math. Ann. 344 (2009), no. 3, 543–595. MR 2501302, DOI https://doi.org/10.1007/s00208-008-0317-1
- Mladen Bestvina and Koji Fujiwara, Quasi-homomorphisms on mapping class groups, Glas. Mat. Ser. III 42(62) (2007), no. 1, 213–236. MR 2332668, DOI https://doi.org/10.3336/gm.42.1.15
- Joan S. Birman, The topology of 3-manifolds, Heegaard distance and the mapping class group of a 2-manifold, Problems on mapping class groups and related topics, Proc. Sympos. Pure Math., vol. 74, Amer. Math. Soc., Providence, RI, 2006, pp. 133–149. MR 2264538, DOI https://doi.org/10.1090/pspum/074/2264538
- Francis Bonahon, Cobordism of automorphisms of surfaces, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 237–270. MR 732345
- B. H. Bowditch, A short proof that a subquadratic isoperimetric inequality implies a linear one, Michigan Math. J. 42 (1995), no. 1, 103–107. MR 1322192, DOI https://doi.org/10.1307/mmj/1029005156
- Brian H. Bowditch, Intersection numbers and the hyperbolicity of the curve complex, J. Reine Angew. Math. 598 (2006), 105–129. MR 2270568, DOI https://doi.org/10.1515/CRELLE.2006.070
- Tara E. Brendle and Dan Margalit, Commensurations of the Johnson kernel, Geom. Topol. 8 (2004), 1361–1384. MR 2119299, DOI https://doi.org/10.2140/gt.2004.8.1361
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486
- Jeffrey F. Brock, The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores, J. Amer. Math. Soc. 16 (2003), no. 3, 495–535. MR 1969203, DOI https://doi.org/10.1090/S0894-0347-03-00424-7
- Alberto Cavicchioli and Fulvia Spaggiari, A note on irreducible Heegaard diagrams, Int. J. Math. Math. Sci. , posted on (2006), Art. ID 53135, 11. MR 2251669, DOI https://doi.org/10.1155/IJMMS/2006/53135
- Young-Eun Choi and Kasra Rafi, Comparison between Teichmüller and Lipschitz metrics, J. Lond. Math. Soc. (2) 76 (2007), no. 3, 739–756. MR 2377122, DOI https://doi.org/10.1112/jlms/jdm052
- H. Cišang, Simple path systems on full pretzels, Mat. Sb. (N.S.) 66 (108) (1965), 230–239 (Russian). MR 0193633
- M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990 (French). Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups]; With an English summary. MR 1075994
- Robert H. Gilman, The geometry of cycles in the Cayley diagram of a group, The mathematical legacy of Wilhelm Magnus: groups, geometry and special functions (Brooklyn, NY, 1992) Contemp. Math., vol. 169, Amer. Math. Soc., Providence, RI, 1994, pp. 331–340. MR 1292908, DOI https://doi.org/10.1090/conm/169/01663
- Robert H. Gilman, On the definition of word hyperbolic groups, Math. Z. 242 (2002), no. 3, 529–541. MR 1985464, DOI https://doi.org/10.1007/s002090100356
- C. McA. Gordon, $3$-dimensional topology up to 1960, History of topology, North-Holland, Amsterdam, 1999, pp. 449–489. MR 1674921, DOI https://doi.org/10.1016/B978-044482375-5/50016-X
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI https://doi.org/10.1007/978-1-4613-9586-7_3
- Wolfgang Haken, Various aspects of the three-dimensional Poincaré problem, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 140–152. MR 0273624
- Ursula Hamenstädt, Geometry of the mapping class groups. I. Boundary amenability, Invent. Math. 175 (2009), no. 3, 545–609. MR 2471596, DOI https://doi.org/10.1007/s00222-008-0158-2
- Kevin Hartshorn, Heegaard splittings of Haken manifolds have bounded distance, Pacific J. Math. 204 (2002), no. 1, 61–75. MR 1905192, DOI https://doi.org/10.2140/pjm.2002.204.61
- W. J. Harvey, Boundary structure of the modular group, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 245–251. MR 624817
- A. Hatcher and W. Thurston, A presentation for the mapping class group of a closed orientable surface, Topology 19 (1980), no. 3, 221–237. MR 579573, DOI https://doi.org/10.1016/0040-9383%2880%2990009-9
- John Hempel, $3$-Manifolds, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. Ann. of Math. Studies, No. 86. MR 0415619
- John Hempel, 3-manifolds as viewed from the curve complex, Topology 40 (2001), no. 3, 631–657. MR 1838999, DOI https://doi.org/10.1016/S0040-9383%2800%2900033-1
- John Hamal Hubbard, Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 1, Matrix Editions, Ithaca, NY, 2006. Teichmüller theory; With contributions by Adrien Douady, William Dunbar, Roland Roeder, Sylvain Bonnot, David Brown, Allen Hatcher, Chris Hruska and Sudeb Mitra; With forewords by William Thurston and Clifford Earle. MR 2245223
- Tsuyoshi Kobayashi, Heights of simple loops and pseudo-Anosov homeomorphisms, Braids (Santa Cruz, CA, 1986) Contemp. Math., vol. 78, Amer. Math. Soc., Providence, RI, 1988, pp. 327–338. MR 975087, DOI https://doi.org/10.1090/conm/078/975087
- Jason Leasure. Geodesics in the complex of curves of a surface. Ph.D. thesis. http://repositories.lib.utexas.edu/bitstream/handle/2152/1700/leasurejp46295.pdf.
- Johanna Mangahas, Uniform uniform exponential growth of subgroups of the mapping class group, Geom. Funct. Anal. 19 (2010), no. 5, 1468–1480. MR 2585580, DOI https://doi.org/10.1007/s00039-009-0038-y
- Howard A. Masur and Yair N. Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999), no. 1, 103–149. MR 1714338, DOI https://doi.org/10.1007/s002220050343
- H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal. 10 (2000), no. 4, 902–974. MR 1791145, DOI https://doi.org/10.1007/PL00001643
- Howard A. Masur and Yair N. Minsky, Quasiconvexity in the curve complex, In the tradition of Ahlfors and Bers, III, Contemp. Math., vol. 355, Amer. Math. Soc., Providence, RI, 2004, pp. 309–320. MR 2145071, DOI https://doi.org/10.1090/conm/355/06460
- Howard A. Masur, Lee Mosher, and Saul Schleimer. On train track splitting sequences. http://arXiv:1004.4564v1.
- Darryl McCullough, Virtually geometrically finite mapping class groups of $3$-manifolds, J. Differential Geom. 33 (1991), no. 1, 1–65. MR 1085134
- Yair Minsky, The classification of Kleinian surface groups. I. Models and bounds, Ann. of Math. (2) 171 (2010), no. 1, 1–107. MR 2630036, DOI https://doi.org/10.4007/annals.2010.171.1
- Lee Mosher. Train track expansions of measured foliations. 2003. http://newark.rutgers. edu/$\sim$mosher/.
- Subhashis Nag, The complex analytic theory of Teichmüller spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1988. A Wiley-Interscience Publication. MR 927291
- R. C. Penner and J. L. Harer, Combinatorics of train tracks, Annals of Mathematics Studies, vol. 125, Princeton University Press, Princeton, NJ, 1992. MR 1144770
- Robert C. Penner, A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988), no. 1, 179–197. MR 930079, DOI https://doi.org/10.1090/S0002-9947-1988-0930079-9
- Kasra Rafi, A combinatorial model for the Teichmüller metric, Geom. Funct. Anal. 17 (2007), no. 3, 936–959. MR 2346280, DOI https://doi.org/10.1007/s00039-007-0615-x
- Kasra Rafi. Hyperbolicity in Teichmüller space. November 2010, http://arXiv:1011.6004.
- Kasra Rafi and Saul Schleimer, Covers and the curve complex, Geom. Topol. 13 (2009), no. 4, 2141–2162. MR 2507116, DOI https://doi.org/10.2140/gt.2009.13.2141
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, vol. 7, Publish or Perish, Inc., Houston, TX, 1990. Corrected reprint of the 1976 original. MR 1277811
- Martin Scharlemann, The complex of curves on nonorientable surfaces, J. London Math. Soc. (2) 25 (1982), no. 1, 171–184. MR 645874, DOI https://doi.org/10.1112/jlms/s2-25.1.171
- Saul Schleimer. Notes on the complex of curves. http://www.warwick.ac.uk/ masgar/Maths/notes.pdf.
- Kenneth J. Shackleton. Tightness and computing distances in the curve complex, http://arxiv.org/abs/math/0412078v3.
- William P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417–431. MR 956596, DOI https://doi.org/10.1090/S0273-0979-1988-15685-6
- Friedhelm Waldhausen, Some problems on $3$-manifolds, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 313–322. MR 520549
- Heiner Zieschang, On Heegaard diagrams of $3$-manifolds, Astérisque 163-164 (1988), 7, 247–280, 283 (1989) (English, with French summary). On the geometry of differentiable manifolds (Rome, 1986). MR 999976
Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 57M50
Retrieve articles in all journals with MSC (2010): 57M50
Additional Information
Howard Masur
Affiliation:
Department of Mathematics, University of Chicago, Chicago, Illinois 60637
MR Author ID:
219274
Email:
masur@math.uic.edu
Saul Schleimer
Affiliation:
Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
MR Author ID:
689853
Email:
s.schleimer@warwick.ac.uk
Received by editor(s):
November 23, 2010
Received by editor(s) in revised form:
April 6, 2012
Published electronically:
August 22, 2012
Additional Notes:
This work is in the public domain.