Smoothness of the truncated display functor
HTML articles powered by AMS MathViewer
- by Eike Lau;
- J. Amer. Math. Soc. 26 (2013), 129-165
- DOI: https://doi.org/10.1090/S0894-0347-2012-00744-9
- Published electronically: June 28, 2012
- PDF | Request permission
Abstract:
We show that to every $p$-divisible group over a $p$-adic ring one can associate a display by crystalline Dieudonné theory. For an appropriate notion of truncated displays, this induces a functor from truncated Barsotti-Tate groups to truncated displays, which is a smooth morphism of smooth algebraic stacks. As an application we obtain a new proof of the equivalence between infinitesimal $p$-divisible groups and nilpotent displays over $p$-adic rings, and a new proof of the equivalence due to Berthelot and Gabber between commutative finite flat group schemes of $p$-power order and Dieudonné modules over perfect rings.References
- Pierre Berthelot, Théorie de Dieudonné sur un anneau de valuation parfait, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 225–268 (French). MR 584086, DOI 10.24033/asens.1381
- Pierre Berthelot, Lawrence Breen, and William Messing, Théorie de Dieudonné cristalline. II, Lecture Notes in Mathematics, vol. 930, Springer-Verlag, Berlin, 1982 (French). MR 667344, DOI 10.1007/BFb0093025
- Pierre Berthelot and William Messing, Théorie de Dieudonné cristalline. III. Théorèmes d’équivalence et de pleine fidélité, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 173–247 (French). MR 1086886
- O. Bültel: PEL modulispaces without $\mathbb {C}$-valued points. arxiv.org:0808.4091.
- A. Grothendieck, Groupes de Barsotti-Tate et cristaux, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars Éditeur, Paris, 1971, pp. 431–436 (French). MR 578496
- Alexandre Grothendieck, Groupes de Barsotti-Tate et cristaux de Dieudonné, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], No. 45 (Été, vol. 1970, Les Presses de l’Université de Montréal, Montreal, QC, 1974 (French). MR 417192
- Luc Illusie, Complexe cotangent et déformations. I, Lecture Notes in Mathematics, Vol. 239, Springer-Verlag, Berlin-New York, 1971 (French). MR 491680, DOI 10.1007/BFb0059052
- Luc Illusie, Déformations de groupes de Barsotti-Tate (d’après A. Grothendieck), Astérisque 127 (1985), 151–198 (French). Seminar on arithmetic bundles: the Mordell conjecture (Paris, 1983/84). MR 801922
- Nicholas M. Katz, Slope filtration of $F$-crystals, Journées de Géométrie Algébrique de Rennes (Rennes, 1978) Astérisque, vol. 63, Soc. Math. France, Paris, 1979, pp. 113–163. MR 563463
- Mark Kisin, Crystalline representations and $F$-crystals, Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 459–496. MR 2263197, DOI 10.1007/978-0-8176-4532-8_{7}
- Andreas Langer and Thomas Zink, De Rham-Witt cohomology for a proper and smooth morphism, J. Inst. Math. Jussieu 3 (2004), no. 2, 231–314. MR 2055710, DOI 10.1017/S1474748004000088
- Eike Lau, Displays and formal $p$-divisible groups, Invent. Math. 171 (2008), no. 3, 617–628. MR 2372808, DOI 10.1007/s00222-007-0090-x
- Eike Lau, Frames and finite group schemes over complete regular local rings, Doc. Math. 15 (2010), 545–569. MR 2679066, DOI 10.3846/1392-6292.2010.15.547-569
- E. Lau: Relations between crystalline Dieudonné theory and Dieudonné displays. arxiv.org:1006.2720
- Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
- William Messing, The crystals associated to Barsotti-Tate groups: with applications to abelian schemes, Lecture Notes in Mathematics, Vol. 264, Springer-Verlag, Berlin-New York, 1972. MR 347836, DOI 10.1007/BFb0058301
- William Messing, Travaux de Zink, Astérisque 311 (2007), Exp. No. 964, ix, 341–364. Séminaire Bourbaki. Vol. 2005/2006. MR 2359049
- Marc-Hubert Nicole, Adrian Vasiu, and Torsten Wedhorn, Purity of level $m$ stratifications, Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), no. 6, 925–955 (English, with English and French summaries). MR 2778452, DOI 10.24033/asens.2136
- Frans Oort, Newton polygons and formal groups: conjectures by Manin and Grothendieck, Ann. of Math. (2) 152 (2000), no. 1, 183–206. MR 1792294, DOI 10.2307/2661381
- Dorin Popescu, General Néron desingularization and approximation, Nagoya Math. J. 104 (1986), 85–115. MR 868439, DOI 10.1017/S0027763000022698
- M. Rapoport and Th. Zink, Period spaces for $p$-divisible groups, Annals of Mathematics Studies, vol. 141, Princeton University Press, Princeton, NJ, 1996. MR 1393439, DOI 10.1515/9781400882601
- Richard G. Swan, Néron-Popescu desingularization, Algebra and geometry (Taipei, 1995) Lect. Algebra Geom., vol. 2, Int. Press, Cambridge, MA, 1998, pp. 135–192. MR 1697953
- Paolo Valabrega, A few theorems on completion of excellent rings, Nagoya Math. J. 61 (1976), 127–133. MR 407007, DOI 10.1017/S0027763000017359
- Torsten Wedhorn, The dimension of Oort strata of Shimura varieties of PEL-type, Moduli of abelian varieties (Texel Island, 1999) Progr. Math., vol. 195, Birkhäuser, Basel, 2001, pp. 441–471. MR 1827029
- Thomas Zink, The display of a formal $p$-divisible group, Astérisque 278 (2002), 127–248. Cohomologies $p$-adiques et applications arithmétiques, I. MR 1922825
Bibliographic Information
- Eike Lau
- Affiliation: Institut für Mathematik, Universität Paderborn, D-33098 Paderborn, Germany
- Email: elau@math.upb.de
- Received by editor(s): September 5, 2011
- Received by editor(s) in revised form: May 25, 2012
- Published electronically: June 28, 2012
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 26 (2013), 129-165
- MSC (2010): Primary 14F30, 14L05
- DOI: https://doi.org/10.1090/S0894-0347-2012-00744-9
- MathSciNet review: 2983008