Global rigidity of higher rank Anosov actions on tori and nilmanifolds
HTML articles powered by AMS MathViewer
- by David Fisher, Boris Kalinin and Ralf Spatzier; with an appendix by James F. Davis
- J. Amer. Math. Soc. 26 (2013), 167-198
- DOI: https://doi.org/10.1090/S0894-0347-2012-00751-6
- Published electronically: August 20, 2012
- PDF | Request permission
Abstract:
We show that sufficiently irreducible Anosov actions of higher rank abelian groups on tori and nilmanifolds are $C^{\infty }$-conjugate to affine actions.References
- Auslander, L.; Green, L.; Hahn, F. Flows on homogeneous spaces. With the assistance of L. Markus and W. Massey, and an appendix by L. Greenberg. Annals of Mathematics Studies, No. 53, Princeton University Press, Princeton, N.J., 1963.
- Luis Barreira and Yakov Pesin, Nonuniform hyperbolicity, Encyclopedia of Mathematics and its Applications, vol. 115, Cambridge University Press, Cambridge, 2007. Dynamics of systems with nonzero Lyapunov exponents. MR 2348606, DOI 10.1017/CBO9781107326026
- P. E. Blanksby and H. L. Montgomery, Algebraic integers near the unit circle, Acta Arith. 18 (1971), 355–369. MR 296021, DOI 10.4064/aa-18-1-355-369
- Danijela Damjanović and Anatole Katok, Local rigidity of partially hyperbolic actions I. KAM method and $\Bbb Z^k$ actions on the torus, Ann. of Math. (2) 172 (2010), no. 3, 1805–1858. MR 2726100, DOI 10.4007/annals.2010.172.1805
- James F. Davis and Paul Kirk, Lecture notes in algebraic topology, Graduate Studies in Mathematics, vol. 35, American Mathematical Society, Providence, RI, 2001. MR 1841974, DOI 10.1090/gsm/035
- Davis, J. F.; Petrosyan, N. Manifolds and Poincaré complexes, in preparation.
- F. T. Farrell and L. E. Jones, Anosov diffeomorphisms constructed from $\pi _{1}\,\textrm {Diff}\,(S^{n})$, Topology 17 (1978), no. 3, 273–282. MR 508890, DOI 10.1016/0040-9383(78)90031-9
- F. T. Farrell, A. Gogolev. Anosov diffeomorphisms constructed from $\pi _k ({\mathrm {Diff}}(S^n))$, preprint.
- David Fisher and Gregory Margulis, Almost isometric actions, property (T), and local rigidity, Invent. Math. 162 (2005), no. 1, 19–80. MR 2198325, DOI 10.1007/s00222-004-0437-5
- David Fisher and Gregory Margulis, Local rigidity of affine actions of higher rank groups and lattices, Ann. of Math. (2) 170 (2009), no. 1, 67–122. MR 2521112, DOI 10.4007/annals.2009.170.67
- David Fisher, Boris Kalinin, and Ralf Spatzier, Totally nonsymplectic Anosov actions on tori and nilmanifolds, Geom. Topol. 15 (2011), no. 1, 191–216. MR 2776843, DOI 10.2140/gt.2011.15.191
- John Franks, Anosov diffeomorphisms on tori, Trans. Amer. Math. Soc. 145 (1969), 117–124. MR 253352, DOI 10.1090/S0002-9947-1969-0253352-7
- Andrey Gogolev, Diffeomorphisms Hölder conjugate to Anosov diffeomorphisms, Ergodic Theory Dynam. Systems 30 (2010), no. 2, 441–456. MR 2599887, DOI 10.1017/S0143385709000169
- Gorodnik, A.; Spatzier, R. Exponential Mixing of Nilmanifold Automorphisms, preprint in preparation.
- Gorodnik, A.; Spatzier, R. Mixing Properties of Commuting Nilmanifold Automorphisms, preprint in preparation.
- Ben Green and Terence Tao, The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. of Math. (2) 175 (2012), no. 2, 465–540. MR 2877065, DOI 10.4007/annals.2012.175.2.2
- Morris W. Hirsch and Barry Mazur, Smoothings of piecewise linear manifolds, Annals of Mathematics Studies, No. 80, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1974. MR 415630
- M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. MR 501173, DOI 10.1007/BFb0092042
- Lars Hörmander, The analysis of linear partial differential operators. I, Classics in Mathematics, Springer-Verlag, Berlin, 2003. Distribution theory and Fourier analysis; Reprint of the second (1990) edition [Springer, Berlin; MR1065993 (91m:35001a)]. MR 1996773, DOI 10.1007/978-3-642-61497-2
- Boris Kalinin and Anatole Katok, Invariant measures for actions of higher rank abelian groups, Smooth ergodic theory and its applications (Seattle, WA, 1999) Proc. Sympos. Pure Math., vol. 69, Amer. Math. Soc., Providence, RI, 2001, pp. 593–637. MR 1858547, DOI 10.1090/pspum/069/1858547
- Boris Kalinin and Anatole Katok, Measure rigidity beyond uniform hyperbolicity: invariant measures for Cartan actions on tori, J. Mod. Dyn. 1 (2007), no. 1, 123–146. MR 2261075, DOI 10.3934/jmd.2007.1.123
- Boris Kalinin and Victoria Sadovskaya, Global rigidity for totally nonsymplectic Anosov $\Bbb Z^k$ actions, Geom. Topol. 10 (2006), 929–954. MR 2240907, DOI 10.2140/gt.2006.10.929
- Boris Kalinin and Victoria Sadovskaya, On the classification of resonance-free Anosov $\Bbb Z^k$ actions, Michigan Math. J. 55 (2007), no. 3, 651–670. MR 2372620, DOI 10.1307/mmj/1197056461
- Boris Kalinin and Ralf Spatzier, On the classification of Cartan actions, Geom. Funct. Anal. 17 (2007), no. 2, 468–490. MR 2322492, DOI 10.1007/s00039-007-0602-2
- Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374, DOI 10.1017/CBO9780511809187
- A. Katok and J. Lewis, Local rigidity for certain groups of toral automorphisms, Israel J. Math. 75 (1991), no. 2-3, 203–241. MR 1164591, DOI 10.1007/BF02776025
- Anatole Katok and Ralf J. Spatzier, First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 131–156. MR 1307298, DOI 10.1007/BF02698888
- Yitzhak Katznelson, An introduction to harmonic analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 248482
- Robion C. Kirby and Laurence C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Annals of Mathematics Studies, No. 88, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah. MR 645390, DOI 10.1515/9781400881505
- D. A. Lind, Dynamical properties of quasihyperbolic toral automorphisms, Ergodic Theory Dynam. Systems 2 (1982), no. 1, 49–68. MR 684244, DOI 10.1017/s0143385700009573
- Anthony Manning, There are no new Anosov diffeomorphisms on tori, Amer. J. Math. 96 (1974), 422–429. MR 358865, DOI 10.2307/2373551
- Gregory A. Margulis and Nantian Qian, Rigidity of weakly hyperbolic actions of higher real rank semisimple Lie groups and their lattices, Ergodic Theory Dynam. Systems 21 (2001), no. 1, 121–164. MR 1826664, DOI 10.1017/S0143385701001109
- M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR 507234, DOI 10.1007/978-3-642-86426-1
- Federico Rodriguez Hertz, Global rigidity of certain abelian actions by toral automorphisms, J. Mod. Dyn. 1 (2007), no. 3, 425–442. MR 2318497, DOI 10.3934/jmd.2007.1.425
- Jeffrey Rauch and Michael Taylor, Regularity of functions smooth along foliations, and elliptic regularity, J. Funct. Anal. 225 (2005), no. 1, 74–93. MR 2149919, DOI 10.1016/j.jfa.2005.03.018
- Sebastian J. Schreiber, On growth rates of subadditive functions for semiflows, J. Differential Equations 148 (1998), no. 2, 334–350. MR 1643183, DOI 10.1006/jdeq.1998.3471
- A. N. Starkov, The first cohomology group, mixing, and minimal sets of the commutative group of algebraic actions on a torus, J. Math. Sci. (New York) 95 (1999), no. 5, 2576–2582. Dynamical systems. 7. MR 1712745, DOI 10.1007/BF02169057
- C. T. C. Wall, Surgery on compact manifolds, London Mathematical Society Monographs, No. 1, Academic Press, London-New York, 1970. MR 431216
- Peter Walters, Conjugacy properties of affine transformations of nilmanifolds, Math. Systems Theory 4 (1970), 327–333. MR 414830, DOI 10.1007/BF01704076
Bibliographic Information
- David Fisher
- Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405
- MR Author ID: 684089
- Email: fisherdm@indiana.edu
- Boris Kalinin
- Affiliation: Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802
- MR Author ID: 603534
- Email: bvk102@psu.edu
- Ralf Spatzier
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- Email: spatzier@umich.edu
- James F. Davis
- Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405
- MR Author ID: 194576
- Email: jfdavis@indiana.edu
- Received by editor(s): October 3, 2011
- Received by editor(s) in revised form: November 17, 2011, and May 17, 2012
- Published electronically: August 20, 2012
- Additional Notes: The authors were supported in part by NSF grants DMS-0643546, DMS-1101150 and DMS-0906085
The contributing author was supported in part by NSF grant DMS-1210991 - © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 26 (2013), 167-198
- MSC (2010): Primary 37C15, 37C85, 37D20, 53C24; Secondary 42B05
- DOI: https://doi.org/10.1090/S0894-0347-2012-00751-6
- MathSciNet review: 2983009