On the cohomology of compact unitary group Shimura varieties at ramified split places
HTML articles powered by AMS MathViewer
- by Peter Scholze and Sug Woo Shin;
- J. Amer. Math. Soc. 26 (2013), 261-294
- DOI: https://doi.org/10.1090/S0894-0347-2012-00752-8
- Published electronically: August 20, 2012
- PDF | Request permission
Abstract:
In this article, we prove results about the cohomology of compact unitary group Shimura varieties at split places. In nonendoscopic cases, we are able to give a full description of the cohomology, after restricting to integral Hecke operators at $p$ on the automorphic side. We allow arbitrary ramification at $p$; even the PEL data may be ramified. This gives a description of the semisimple local Hasse-Weil zeta function in these cases.
We also treat cases of nontrivial endoscopy. For this purpose, we give a general stabilization of the expression given in the article http://dx.doi.org/ 10.1090/S0894-0347-2012-00753-X, following the stabilization given by Kottwitz. This introduces endoscopic transfers of the functions $\phi _{\tau ,h}$ introduced in the above article. We state a general conjecture relating these endoscopic transfers with Langlands parameters.
We verify this conjecture in all cases of EL type and deduce new results about the endoscopic part of the cohomology of Shimura varieties. This allows us to simplify the construction of Galois representations attached to conjugate self-dual regular algebraic cuspidal automorphic representations of $\mathrm {GL}_n$.
References
- James Arthur, A note on $L$-packets, Pure Appl. Math. Q. 2 (2006), no. 1, Special Issue: In honor of John H. Coates., 199–217. MR 2217572, DOI 10.4310/PAMQ.2006.v2.n1.a9
- J. Arthur. The endoscopic classification of representations: orthogonal and symplectic groups. 2011.
- James Arthur and Laurent Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Annals of Mathematics Studies, vol. 120, Princeton University Press, Princeton, NJ, 1989. MR 1007299
- T. Barnet-Lamb, T. Gee, D. Geraghty, and R. Taylor. Local-global compatibility for $l=p$. I. preprint, http://math.ias.edu/~rtaylor.
- T. Barnet-Lamb, T. Gee, D. Geraghty, and R. Taylor. Local-global compatibility for $l=p$. II. preprint, http://math.ias.edu/~rtaylor.
- J. Bernstein, P. Deligne, and D. Kazhdan, Trace Paley-Wiener theorem for reductive $p$-adic groups, J. Analyse Math. 47 (1986), 180–192. MR 874050, DOI 10.1007/BF02792538
- J. N. Bernstein, Le “centre” de Bernstein, Representations of reductive groups over a local field, Travaux en Cours, Hermann, Paris, 1984, pp. 1–32 (French). Edited by P. Deligne. MR 771671
- Don Blasius and Jonathan D. Rogawski, Zeta functions of Shimura varieties, Motives (Seattle, WA, 1991) Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 525–571. MR 1265563, DOI 10.1090/pspum/055.2/1265563
- K. Buzzard and T. Gee. The conjectural connections between automorphic representations and Galois representations. arXiv:1009.0785.
- A. Caraiani. Local-global compatibility and the action of monodromy on nearby cycles. preprint, arXiv:1010:2188.
- G. Chenevier and M. Harris. Construction of automorphic Galois representations, II. preprint, http://fa.institut.math.jussieu.fr/node/45.
- L. Clozel. Purity reigns supreme. http://www.institut.math.jussieu.fr/projets/fa/bpFiles/Clozel2.pdf.
- Laurent Clozel, Représentations galoisiennes associées aux représentations automorphes autoduales de $\textrm {GL}(n)$, Inst. Hautes Études Sci. Publ. Math. 73 (1991), 97–145 (French). MR 1114211, DOI 10.1007/BF02699257
- Laurent Clozel, Michael Harris, Jean-Pierre Labesse, and Bao-Châu Ngô (eds.), On the stabilization of the trace formula, Stabilization of the Trace Formula, Shimura Varieties, and Arithmetic Applications, vol. 1, International Press, Somerville, MA, 2011. MR 2742611
- Laurent Fargues, Cohomologie des espaces de modules de groupes $p$-divisibles et correspondances de Langlands locales, Astérisque 291 (2004), 1–199 (French, with English and French summaries). Variétés de Shimura, espaces de Rapoport-Zink et correspondances de Langlands locales. MR 2074714
- Michael Harris and Jean-Pierre Labesse, Conditional base change for unitary groups, Asian J. Math. 8 (2004), no. 4, 653–683. MR 2127943, DOI 10.4310/AJM.2004.v8.n4.a19
- Michael Harris and Richard Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001. With an appendix by Vladimir G. Berkovich. MR 1876802
- Michael Harris and Richard Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001. With an appendix by Vladimir G. Berkovich. MR 1876802
- Guy Henniart, Une preuve simple des conjectures de Langlands pour $\textrm {GL}(n)$ sur un corps $p$-adique, Invent. Math. 139 (2000), no. 2, 439–455 (French, with English summary). MR 1738446, DOI 10.1007/s002220050012
- David Kazhdan and Yakov Varshavsky, Endoscopic decomposition of certain depth zero representations, Studies in Lie theory, Progr. Math., vol. 243, Birkhäuser Boston, Boston, MA, 2006, pp. 223–301. MR 2214251, DOI 10.1007/0-8176-4478-4_{1}0
- Robert E. Kottwitz, Shimura varieties and twisted orbital integrals, Math. Ann. 269 (1984), no. 3, 287–300. MR 761308, DOI 10.1007/BF01450697
- Robert E. Kottwitz, Stable trace formula: cuspidal tempered terms, Duke Math. J. 51 (1984), no. 3, 611–650. MR 757954, DOI 10.1215/S0012-7094-84-05129-9
- Robert E. Kottwitz, Stable trace formula: elliptic singular terms, Math. Ann. 275 (1986), no. 3, 365–399. MR 858284, DOI 10.1007/BF01458611
- Robert E. Kottwitz, On the $\lambda$-adic representations associated to some simple Shimura varieties, Invent. Math. 108 (1992), no. 3, 653–665. MR 1163241, DOI 10.1007/BF02100620
- R. Kottwitz and M. Rapoport, On the existence of $F$-crystals, Comment. Math. Helv. 78 (2003), no. 1, 153–184. MR 1966756, DOI 10.1007/s000140300007
- Robert E. Kottwitz and Diana Shelstad, Foundations of twisted endoscopy, Astérisque 255 (1999), vi+190 (English, with English and French summaries). MR 1687096
- Robert E. Kottwitz, Isocrystals with additional structure, Compositio Math. 56 (1985), no. 2, 201–220. MR 809866
- Robert E. Kottwitz, Shimura varieties and $\lambda$-adic representations, Automorphic forms, Shimura varieties, and $L$-functions, Vol. I (Ann Arbor, MI, 1988) Perspect. Math., vol. 10, Academic Press, Boston, MA, 1990, pp. 161–209. MR 1044820
- Robert E. Kottwitz, On the $\lambda$-adic representations associated to some simple Shimura varieties, Invent. Math. 108 (1992), no. 3, 653–665. MR 1163241, DOI 10.1007/BF02100620
- Robert E. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5 (1992), no. 2, 373–444. MR 1124982, DOI 10.1090/S0894-0347-1992-1124982-1
- Robert E. Kottwitz, Isocrystals with additional structure. II, Compositio Math. 109 (1997), no. 3, 255–339. MR 1485921, DOI 10.1023/A:1000102604688
- Kai-Wen Lan, Arithmetic compactifications of PEL-type Shimura varieties, ProQuest LLC, Ann Arbor, MI, 2008. Thesis (Ph.D.)–Harvard University. MR 2711676
- R. P. Langlands, Stable conjugacy: definitions and lemmas, Canadian J. Math. 31 (1979), no. 4, 700–725. MR 540901, DOI 10.4153/CJM-1979-069-2
- R. P. Langlands and D. Shelstad, On the definition of transfer factors, Math. Ann. 278 (1987), no. 1-4, 219–271. MR 909227, DOI 10.1007/BF01458070
- Sophie Morel, On the cohomology of certain noncompact Shimura varieties, Annals of Mathematics Studies, vol. 173, Princeton University Press, Princeton, NJ, 2010. With an appendix by Robert Kottwitz. MR 2567740, DOI 10.1515/9781400835393
- Bao Châu Ngô, Le lemme fondamental pour les algèbres de Lie, Publ. Math. Inst. Hautes Études Sci. 111 (2010), 1–169 (French). MR 2653248, DOI 10.1007/s10240-010-0026-7
- Michael Rapoport, A guide to the reduction modulo $p$ of Shimura varieties, Astérisque 298 (2005), 271–318 (English, with English and French summaries). Automorphic forms. I. MR 2141705
- M. Rapoport and M. Richartz, On the classification and specialization of $F$-isocrystals with additional structure, Compositio Math. 103 (1996), no. 2, 153–181. MR 1411570
- P. Scholze. The Langlands-Kottwitz approach for some simple Shimura varieties. arXiv:1003.2451, to appear in Invent. Math.
- P. Scholze. The Langlands-Kottwitz method and deformation spaces of $p$-divisible groups. arXiv:1110.0230.
- P. Scholze. A new approach to the local Langlands correspondence for $\mathrm {GL}_n$ over $p$-adic fields. arXiv:1010.1540, to appear in Invent. Math.
- Freydoon Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series for $p$-adic groups, Ann. of Math. (2) 132 (1990), no. 2, 273–330. MR 1070599, DOI 10.2307/1971524
- S. W. Shin. Automorphic Plancherel density theorem. to appear in Israel J. of Math.
- Sug Woo Shin, Galois representations arising from some compact Shimura varieties, Ann. of Math. (2) 173 (2011), no. 3, 1645–1741. MR 2800722, DOI 10.4007/annals.2011.173.3.9
- Richard Taylor and Teruyoshi Yoshida, Compatibility of local and global Langlands correspondences, J. Amer. Math. Soc. 20 (2007), no. 2, 467–493. MR 2276777, DOI 10.1090/S0894-0347-06-00542-X
- E. Viehmann and T. Wedhorn. Ekedahl-Oort and Newton strata for Shimura varieties of PEL type. 2010.
- David A. Vogan Jr., The local Langlands conjecture, Representation theory of groups and algebras, Contemp. Math., vol. 145, Amer. Math. Soc., Providence, RI, 1993, pp. 305–379. MR 1216197, DOI 10.1090/conm/145/1216197
- J.-L. Waldspurger, Le lemme fondamental implique le transfert, Compositio Math. 105 (1997), no. 2, 153–236 (French). MR 1440722, DOI 10.1023/A:1000103112268
- J.-L. Waldspurger, L’endoscopie tordue n’est pas si tordue, Mem. Amer. Math. Soc. 194 (2008), no. 908, x+261 (French, with English summary). MR 2418405, DOI 10.1090/memo/0908
- P.-J. White. Tempered automorphic representations of the unitary group. arXiv: 1106.1127v1 [math.NT].
Bibliographic Information
- Peter Scholze
- Affiliation: Mathematisches Institut der Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
- MR Author ID: 890936
- Sug Woo Shin
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 – and – Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722, Republic of Korea
- Received by editor(s): November 9, 2011
- Received by editor(s) in revised form: July 23, 2012
- Published electronically: August 20, 2012
- Additional Notes: This work was written while the first author was a Clay Research Fellow.
The second author’s work was supported by the National Science Foundation during his stay at the Institute for Advanced Study under agreement No. DMS-0635607. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. - © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 26 (2013), 261-294
- MSC (2010): Primary 11F70, 11F80, 11G18, 11R39, 11S37; Secondary 14G35, 11F72, 22E50, 22E55
- DOI: https://doi.org/10.1090/S0894-0347-2012-00752-8
- MathSciNet review: 2983012