Symbolic dynamics for surface diffeomorphisms with positive entropy
HTML articles powered by AMS MathViewer
- by Omri M. Sarig;
- J. Amer. Math. Soc. 26 (2013), 341-426
- DOI: https://doi.org/10.1090/S0894-0347-2012-00758-9
- Published electronically: November 26, 2012
- PDF | Request permission
Abstract:
Let $f$ be a $C^{1+\varepsilon }$ diffeomorphism on a compact smooth surface with positive topological entropy $h$. For every $0<\delta <h$, we construct an invariant Borel set $E$ and a countable Markov partition for the restriction of $f$ to $E$ in such a way that $E$ has full measure with respect to every ergodic invariant probability measure with entropy greater than $\delta$. The following results follow: $f$ has at most countably many ergodic measures of maximal entropy (a conjecture of J. Buzzi), and in the case when $f$ is $C^\infty$, $\limsup \limits _{n\to \infty }e^{-n h}\#\{x:f^n(x)=x\}>0$ (a conjecture of A. Katok).References
- R. L. Adler and B. Weiss, Entropy, a complete metric invariant for automorphisms of the torus, Proc. Nat. Acad. Sci. U.S.A. 57 (1967), 1573–1576. MR 212156, DOI 10.1073/pnas.57.6.1573
- Luis Barreira and Yakov Pesin, Nonuniform hyperbolicity, Encyclopedia of Mathematics and its Applications, vol. 115, Cambridge University Press, Cambridge, 2007. Dynamics of systems with nonzero Lyapunov exponents. MR 2348606, DOI 10.1017/CBO9781107326026
- Michael Benedicks and Lai-Sang Young, Markov extensions and decay of correlations for certain Hénon maps, Astérisque 261 (2000), xi, 13–56 (English, with English and French summaries). Géométrie complexe et systèmes dynamiques (Orsay, 1995). MR 1755436
- Kenneth Richard Berg, ON THE CONJUGACY PROBLEM FOR K-SYSTEMS, ProQuest LLC, Ann Arbor, MI, 1967. Thesis (Ph.D.)–University of Minnesota. MR 2616688
- P. Berger: Properties of the maximal entropy measure and geometry of Hénon attractors. arXiv:1202.2822v1 (2012), 53 pages.
- Rufus Bowen, Markov partitions for Axiom $\textrm {A}$ diffeomorphisms, Amer. J. Math. 92 (1970), 725–747. MR 277003, DOI 10.2307/2373370
- Rufus Bowen, Periodic points and measures for Axiom $A$ diffeomorphisms, Trans. Amer. Math. Soc. 154 (1971), 377–397. MR 282372, DOI 10.1090/S0002-9947-1971-0282372-0
- Rufus Bowen, On Axiom A diffeomorphisms, Regional Conference Series in Mathematics, No. 35, American Mathematical Society, Providence, RI, 1978. MR 482842
- Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Second revised edition, Lecture Notes in Mathematics, vol. 470, Springer-Verlag, Berlin, 2008. With a preface by David Ruelle; Edited by Jean-René Chazottes. MR 2423393, DOI 10.1007/978-3-540-77695-6
- Mike Boyle and Tomasz Downarowicz, The entropy theory of symbolic extensions, Invent. Math. 156 (2004), no. 1, 119–161. MR 2047659, DOI 10.1007/s00222-003-0335-2
- Mike Boyle, Doris Fiebig, and Ulf Fiebig, Residual entropy, conditional entropy and subshift covers, Forum Math. 14 (2002), no. 5, 713–757. MR 1924775, DOI 10.1515/form.2002.031
- M. Brin: Hölder continuity of invariant distributions, in Smooth Ergodic Theory and its Applications, edited by A. Katok, R. de la Llave, Ya. Pesin, and H. Weiss, Proc. Symp. Pure Math. 69, AMS 2001, pp. 99–101.
- H. Bruin, Induced maps, Markov extensions and invariant measures in one-dimensional dynamics, Comm. Math. Phys. 168 (1995), no. 3, 571–580. MR 1328254, DOI 10.1007/BF02101844
- Henk Bruin and Mike Todd, Markov extensions and lifting measures for complex polynomials, Ergodic Theory Dynam. Systems 27 (2007), no. 3, 743–768. MR 2322177, DOI 10.1017/S0143385706000976
- L. A. Bunimovich and Ya. G. Sinaĭ, Markov partitions for dispersed billiards, Comm. Math. Phys. 78 (1980/81), no. 2, 247–280. MR 597749, DOI 10.1007/BF01942372
- L. A. Bunimovich, Ya. G. Sinaĭ, and N. I. Chernov, Markov partitions for two-dimensional hyperbolic billiards, Uspekhi Mat. Nauk 45 (1990), no. 3(273), 97–134, 221 (Russian); English transl., Russian Math. Surveys 45 (1990), no. 3, 105–152. MR 1071936, DOI 10.1070/RM1990v045n03ABEH002355
- David Burguet, $\scr C^2$ surface diffeomorphisms have symbolic extensions, Invent. Math. 186 (2011), no. 1, 191–236. MR 2836054, DOI 10.1007/s00222-011-0317-8
- Jérôme Buzzi, Intrinsic ergodicity of smooth interval maps, Israel J. Math. 100 (1997), 125–161. MR 1469107, DOI 10.1007/BF02773637
- Jérôme Buzzi, Markov extensions for multi-dimensional dynamical systems, Israel J. Math. 112 (1999), 357–380. MR 1714974, DOI 10.1007/BF02773488
- Jérôme Buzzi, Subshifts of quasi-finite type, Invent. Math. 159 (2005), no. 2, 369–406. MR 2116278, DOI 10.1007/s00222-004-0392-1
- Jérôme Buzzi, Maximal entropy measures for piecewise affine surface homeomorphisms, Ergodic Theory Dynam. Systems 29 (2009), no. 6, 1723–1763. MR 2563090, DOI 10.1017/S0143385708000953
- Jérôme Buzzi, Puzzles of quasi-finite type, zeta functions and symbolic dynamics for multi-dimensional maps, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 3, 801–852 (English, with English and French summaries). MR 2680817, DOI 10.5802/aif.2540
- Tomasz Downarowicz and Sheldon Newhouse, Symbolic extensions and smooth dynamical systems, Invent. Math. 160 (2005), no. 3, 453–499. MR 2178700, DOI 10.1007/s00222-004-0413-0
- A. Fathi and M. Shub, Some dynamics of pseudo-Anosov diffeomorphisms, Astérique 66-67 (1979), 181-207.
- T. N. T. Goodman, Relating topological entropy and measure entropy, Bull. London Math. Soc. 3 (1971), 176–180. MR 289746, DOI 10.1112/blms/3.2.176
- B. M. Gurevič, Topological entropy of a countable Markov chain, Dokl. Akad. Nauk SSSR 187 (1969), 715–718 (Russian). MR 263162
- B. M. Gurevič, Shift entropy and Markov measures in the space of paths of a countable graph, Dokl. Akad. Nauk SSSR 192 (1970), 963–965 (Russian). MR 268356
- Franz Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Israel J. Math. 34 (1979), no. 3, 213–237 (1980). MR 570882, DOI 10.1007/BF02760884
- Franz Hofbauer, The structure of piecewise monotonic transformations, Ergodic Theory Dynam. Systems 1 (1981), no. 2, 159–178. MR 661817, DOI 10.1017/s0143385700009202
- Godofredo Iommi and Mike Todd, Natural equilibrium states for multimodal maps, Comm. Math. Phys. 300 (2010), no. 1, 65–94. MR 2725183, DOI 10.1007/s00220-010-1112-x
- Vadim Yu. Kaloshin, Generic diffeomorphisms with superexponential growth of number of periodic orbits, Comm. Math. Phys. 211 (2000), no. 1, 253–271. MR 1757015, DOI 10.1007/s002200050811
- A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 51 (1980), 137–173. MR 573822, DOI 10.1007/BF02684777
- Anatole Katok, Nonuniform hyperbolicity and structure of smooth dynamical systems, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 1245–1253. MR 804774
- Anatole Katok, Fifty years of entropy in dynamics: 1958–2007, J. Mod. Dyn. 1 (2007), no. 4, 545–596. MR 2342699, DOI 10.3934/jmd.2007.1.545
- Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374, DOI 10.1017/CBO9780511809187
- A. Katok and L. Mendoza, Dynamical systems with non-uniformly hyperbolic behavior, Supplement to “Introduction to the modern theory of dynamical systems.” Cambridge UP (1995), 659–700. (See [KH].)
- Gerhard Keller, Lifting measures to Markov extensions, Monatsh. Math. 108 (1989), no. 2-3, 183–200. MR 1026617, DOI 10.1007/BF01308670
- G. Keller, Markov extensions, zeta functions, and Fredholm theory for piecewise invertible dynamical systems, Trans. Amer. Math. Soc. 314 (1989), no. 2, 433–497. MR 1005524, DOI 10.1090/S0002-9947-1989-1005524-4
- Bruce P. Kitchens, Symbolic dynamics, Universitext, Springer-Verlag, Berlin, 1998. One-sided, two-sided and countable state Markov shifts. MR 1484730, DOI 10.1007/978-3-642-58822-8
- Tyll Krüger and Serge Troubetzkoy, Markov partitions and shadowing for non-uniformly hyperbolic systems with singularities, Ergodic Theory Dynam. Systems 12 (1992), no. 3, 487–508. MR 1182660, DOI 10.1017/S014338570000691X
- Grigoriy A. Margulis, On some aspects of the theory of Anosov systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004. With a survey by Richard Sharp: Periodic orbits of hyperbolic flows; Translated from the Russian by Valentina Vladimirovna Szulikowska. MR 2035655, DOI 10.1007/978-3-662-09070-1
- Sheldon E. Newhouse, Continuity properties of entropy, Ann. of Math. (2) 129 (1989), no. 2, 215–235. MR 986792, DOI 10.2307/1971492
- V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč. 19 (1968), 179–210 (Russian). MR 240280
- William Parry and Mark Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990), 268 (English, with French summary). MR 1085356
- Ja. B. Pesin, Families of invariant manifolds that correspond to nonzero characteristic exponents, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 6, 1332–1379, 1440 (Russian). MR 458490
- Ya. B. Pesin, S. Senti, and K. Zhang, Lifting measures to inducing schemes, Ergodic Theory Dynam. Systems 28 (2008), no. 2, 553–574. MR 2408392, DOI 10.1017/S0143385707000806
- David Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Mat. 9 (1978), no. 1, 83–87. MR 516310, DOI 10.1007/BF02584795
- Ja. G. Sinaĭ, Construction of Markov partitionings, Funkcional. Anal. i Priložen. 2 (1968), no. 3, 70–80 (Loose errata) (Russian). MR 250352
- Ja. G. Sinaĭ, Gibbs measures in ergodic theory, Uspehi Mat. Nauk 27 (1972), no. 4(166), 21–64 (Russian). MR 399421
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
- Michael Spivak, A comprehensive introduction to differential geometry. Vol. I, 2nd ed., Publish or Perish, Inc., Wilmington, DE, 1979. MR 532830
- S. M. Srivastava, A course on Borel sets, Graduate Texts in Mathematics, vol. 180, Springer-Verlag, New York, 1998. MR 1619545, DOI 10.1007/978-3-642-85473-6
- Y\B{o}ichir\B{o} Takahashi, Isomorphisms of $\beta$-automorphisms to Markov automorphisms, Osaka Math. J. 10 (1973), 175–184. MR 340552
- Lai-Sang Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. (2) 147 (1998), no. 3, 585–650. MR 1637655, DOI 10.2307/120960
- Roland Zweimüller, Ergodic properties of infinite measure-preserving interval maps with indifferent fixed points, Ergodic Theory Dynam. Systems 20 (2000), no. 5, 1519–1549. MR 1786727, DOI 10.1017/S0143385700000821
Bibliographic Information
- Omri M. Sarig
- Affiliation: Faculty of Mathematics and Computer Science, The Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot 76100, Israel
- Email: omsarig@gmail.com
- Received by editor(s): January 21, 2011
- Received by editor(s) in revised form: September 2, 2012
- Published electronically: November 26, 2012
- Additional Notes: This work was partially supported by the NSF grant DMS–0400687 and by the ERC award ERC-2009-StG no. 239885
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 26 (2013), 341-426
- MSC (2010): Primary 37D25; Secondary 37D35
- DOI: https://doi.org/10.1090/S0894-0347-2012-00758-9
- MathSciNet review: 3011417