The logarithmic Minkowski problem
HTML articles powered by AMS MathViewer
- by Károly J. Böröczky, Erwin Lutwak, Deane Yang and Gaoyong Zhang
- J. Amer. Math. Soc. 26 (2013), 831-852
- DOI: https://doi.org/10.1090/S0894-0347-2012-00741-3
- Published electronically: June 5, 2012
- PDF | Request permission
Abstract:
In analogy with the classical Minkowski problem, necessary and sufficient conditions are given to assure that a given measure on the unit sphere is the cone-volume measure of the unit ball of a finite-dimensional Banach space.References
- A. Alexandroff, Existence and uniqueness of a convex surface with a given integral curvature, C. R. (Doklady) Acad. Sci. URSS (N.S.) 35 (1942), 131–134. MR 0007625
- Ben Andrews, Gauss curvature flow: the fate of the rolling stones, Invent. Math. 138 (1999), no. 1, 151–161. MR 1714339, DOI 10.1007/s002220050344
- Ben Andrews, Classification of limiting shapes for isotropic curve flows, J. Amer. Math. Soc. 16 (2003), no. 2, 443–459. MR 1949167, DOI 10.1090/S0894-0347-02-00415-0
- Franck Barthe, Olivier Guédon, Shahar Mendelson, and Assaf Naor, A probabilistic approach to the geometry of the $l^n_p$-ball, Ann. Probab. 33 (2005), no. 2, 480–513. MR 2123199, DOI 10.1214/009117904000000874
- Luis A. Caffarelli, Interior $W^{2,p}$ estimates for solutions of the Monge-Ampère equation, Ann. of Math. (2) 131 (1990), no. 1, 135–150. MR 1038360, DOI 10.2307/1971510
- S. Campi and P. Gronchi, The $L^p$-Busemann-Petty centroid inequality, Adv. Math. 167 (2002), no. 1, 128–141. MR 1901248, DOI 10.1006/aima.2001.2036
- Wenxiong Chen, $L_p$ Minkowski problem with not necessarily positive data, Adv. Math. 201 (2006), no. 1, 77–89. MR 2204749, DOI 10.1016/j.aim.2004.11.007
- Shiu Yuen Cheng and Shing Tung Yau, On the regularity of the solution of the $n$-dimensional Minkowski problem, Comm. Pure Appl. Math. 29 (1976), no. 5, 495–516. MR 423267, DOI 10.1002/cpa.3160290504
- Kai-Seng Chou and Xu-Jia Wang, The $L_p$-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math. 205 (2006), no. 1, 33–83. MR 2254308, DOI 10.1016/j.aim.2005.07.004
- Bennett Chow, Deforming convex hypersurfaces by the $n$th root of the Gaussian curvature, J. Differential Geom. 22 (1985), no. 1, 117–138. MR 826427
- Andrea Cianchi, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Affine Moser-Trudinger and Morrey-Sobolev inequalities, Calc. Var. Partial Differential Equations 36 (2009), no. 3, 419–436. MR 2551138, DOI 10.1007/s00526-009-0235-4
- Andrea Colesanti and Michele Fimiani, The Minkowski problem for torsional rigidity, Indiana Univ. Math. J. 59 (2010), no. 3, 1013–1039. MR 2779070, DOI 10.1512/iumj.2010.59.3937
- William J. Firey, Shapes of worn stones, Mathematika 21 (1974), 1–11. MR 362045, DOI 10.1112/S0025579300005714
- M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom. 23 (1986), no. 1, 69–96. MR 840401
- Richard J. Gardner, Geometric tomography, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, New York, 2006. MR 2251886, DOI 10.1017/CBO9781107341029
- R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 3, 355–405. MR 1898210, DOI 10.1090/S0273-0979-02-00941-2
- R. J. Gardner and Gaoyong Zhang, Affine inequalities and radial mean bodies, Amer. J. Math. 120 (1998), no. 3, 505–528. MR 1623396
- M. Gromov and V. D. Milman, Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces, Compositio Math. 62 (1987), no. 3, 263–282. MR 901393
- Peter M. Gruber, Convex and discrete geometry, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 336, Springer, Berlin, 2007. MR 2335496
- Bo Guan and Pengfei Guan, Convex hypersurfaces of prescribed curvatures, Ann. of Math. (2) 156 (2002), no. 2, 655–673. MR 1933079, DOI 10.2307/3597202
- P. Guan and C.-S. Lin, On equation $\det (u_{i\!j}+\delta _{i\!j}u)=u^pf$ on $S^n$, preprint No. 2000-7, NCTS in Tsing-Hua University, 2000.
- Pengfei Guan and Xi-Nan Ma, The Christoffel-Minkowski problem. I. Convexity of solutions of a Hessian equation, Invent. Math. 151 (2003), no. 3, 553–577. MR 1961338, DOI 10.1007/s00222-002-0259-2
- Christoph Haberl, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, The even Orlicz Minkowski problem, Adv. Math. 224 (2010), no. 6, 2485–2510. MR 2652213, DOI 10.1016/j.aim.2010.02.006
- Christoph Haberl and Franz E. Schuster, General $L_p$ affine isoperimetric inequalities, J. Differential Geom. 83 (2009), no. 1, 1–26. MR 2545028
- Christoph Haberl and Franz E. Schuster, Asymmetric affine $L_p$ Sobolev inequalities, J. Funct. Anal. 257 (2009), no. 3, 641–658. MR 2530600, DOI 10.1016/j.jfa.2009.04.009
- C. Haberl, F. Schuster, and J. Xiao, An asymmetric affine Pólya-Szegő principle, Math. Ann. 352 (2012), 517-542.
- Binwu He, Gangsong Leng, and Kanghai Li, Projection problems for symmetric polytopes, Adv. Math. 207 (2006), no. 1, 73–90. MR 2264066, DOI 10.1016/j.aim.2005.11.006
- Changqing Hu, Xi-Nan Ma, and Chunli Shen, On the Christoffel-Minkowski problem of Firey’s $p$-sum, Calc. Var. Partial Differential Equations 21 (2004), no. 2, 137–155. MR 2085300, DOI 10.1007/s00526-003-0250-9
- Daniel Hug, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, On the $L_p$ Minkowski problem for polytopes, Discrete Comput. Geom. 33 (2005), no. 4, 699–715. MR 2132298, DOI 10.1007/s00454-004-1149-8
- David Jerison, A Minkowski problem for electrostatic capacity, Acta Math. 176 (1996), no. 1, 1–47. MR 1395668, DOI 10.1007/BF02547334
- Mei-Yue Jiang, Remarks on the 2-dimensional $L_p$-Minkowski problem, Adv. Nonlinear Stud. 10 (2010), no. 2, 297–313. MR 2656684, DOI 10.1515/ans-2010-0204
- Fritz John, Polar correspondence with respect to a convex region, Duke Math. J. 3 (1937), no. 2, 355–369. MR 1545993, DOI 10.1215/S0012-7094-37-00327-2
- Daniel A. Klain, The Minkowski problem for polytopes, Adv. Math. 185 (2004), no. 2, 270–288. MR 2060470, DOI 10.1016/j.aim.2003.07.001
- Hans Lewy, On differential geometry in the large. I. Minkowski’s problem, Trans. Amer. Math. Soc. 43 (1938), no. 2, 258–270. MR 1501942, DOI 10.1090/S0002-9947-1938-1501942-3
- Monika Ludwig, Ellipsoids and matrix-valued valuations, Duke Math. J. 119 (2003), no. 1, 159–188. MR 1991649, DOI 10.1215/S0012-7094-03-11915-8
- Monika Ludwig, General affine surface areas, Adv. Math. 224 (2010), no. 6, 2346–2360. MR 2652209, DOI 10.1016/j.aim.2010.02.004
- Monika Ludwig and Matthias Reitzner, A classification of $\textrm {SL}(n)$ invariant valuations, Ann. of Math. (2) 172 (2010), no. 2, 1219–1267. MR 2680490, DOI 10.4007/annals.2010.172.1223
- Erwin Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), no. 1, 131–150. MR 1231704
- Erwin Lutwak and Vladimir Oliker, On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geom. 41 (1995), no. 1, 227–246. MR 1316557
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, $L_p$ affine isoperimetric inequalities, J. Differential Geom. 56 (2000), no. 1, 111–132. MR 1863023
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, A new ellipsoid associated with convex bodies, Duke Math. J. 104 (2000), no. 3, 375–390. MR 1781476, DOI 10.1215/S0012-7094-00-10432-2
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, The Cramer-Rao inequality for star bodies, Duke Math. J. 112 (2002), no. 1, 59–81. MR 1890647, DOI 10.1215/S0012-9074-02-11212-5
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Sharp affine $L_p$ Sobolev inequalities, J. Differential Geom. 62 (2002), no. 1, 17–38. MR 1987375
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, On the $L_p$-Minkowski problem, Trans. Amer. Math. Soc. 356 (2004), no. 11, 4359–4370. MR 2067123, DOI 10.1090/S0002-9947-03-03403-2
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Volume inequalities for subspaces of $L_p$, J. Differential Geom. 68 (2004), no. 1, 159–184. MR 2152912
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Optimal Sobolev norms and the $L^p$ Minkowski problem, Int. Math. Res. Not. , posted on (2006), Art. ID 62987, 21. MR 2211138, DOI 10.1155/IMRN/2006/62987
- Erwin Lutwak and Gaoyong Zhang, Blaschke-Santaló inequalities, J. Differential Geom. 47 (1997), no. 1, 1–16. MR 1601426
- H. Minkowski, Allgemeine Lehrsätze über die convexen Polyeder, Nachr. Ges. Wiss. Göttingen, 198–219. Gesammelte Abhandlungen, Vol. II, Teubner, Leipzig, 1911, pp. 103–121.
- Assaf Naor, The surface measure and cone measure on the sphere of $l_p^n$, Trans. Amer. Math. Soc. 359 (2007), no. 3, 1045–1079. MR 2262841, DOI 10.1090/S0002-9947-06-03939-0
- Assaf Naor and Dan Romik, Projecting the surface measure of the sphere of $\scr l_p^n$, Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), no. 2, 241–261 (English, with English and French summaries). MR 1962135, DOI 10.1016/S0246-0203(02)00008-0
- Louis Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. 6 (1953), 337–394. MR 58265, DOI 10.1002/cpa.3160060303
- G. Paouris, Concentration of mass on convex bodies, Geom. Funct. Anal. 16 (2006), no. 5, 1021–1049. MR 2276533, DOI 10.1007/s00039-006-0584-5
- G. Paouris and E. Werner, Relative entropy of cone measures and $L_p$ centroid bodies, Proc. London Math. Soc. 104 (2012), 253–286.
- Aleksey Vasil′yevich Pogorelov, The Minkowski multidimensional problem, Scripta Series in Mathematics, V. H. Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons], New York-Toronto-London, 1978. Translated from the Russian by Vladimir Oliker; Introduction by Louis Nirenberg. MR 0478079
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521, DOI 10.1017/CBO9780511526282
- Alina Stancu, The discrete planar $L_0$-Minkowski problem, Adv. Math. 167 (2002), no. 1, 160–174. MR 1901250, DOI 10.1006/aima.2001.2040
- Alina Stancu, On the number of solutions to the discrete two-dimensional $L_0$-Minkowski problem, Adv. Math. 180 (2003), no. 1, 290–323. MR 2019226, DOI 10.1016/S0001-8708(03)00005-7
- A. Stancu, Centro-affine invariants for smooth convex bodies, Int. Math. Res. Not. 2012, 2289–2320.
- A. C. Thompson, Minkowski geometry, Encyclopedia of Mathematics and its Applications, vol. 63, Cambridge University Press, Cambridge, 1996. MR 1406315, DOI 10.1017/CBO9781107325845
- Kaising Tso, Deforming a hypersurface by its Gauss-Kronecker curvature, Comm. Pure Appl. Math. 38 (1985), no. 6, 867–882. MR 812353, DOI 10.1002/cpa.3160380615
- Vladimir Umanskiy, On solvability of two-dimensional $L_p$-Minkowski problem, Adv. Math. 180 (2003), no. 1, 176–186. MR 2019221, DOI 10.1016/S0001-8708(02)00101-9
- Ge Xiong, Extremum problems for the cone volume functional of convex polytopes, Adv. Math. 225 (2010), no. 6, 3214–3228. MR 2729006, DOI 10.1016/j.aim.2010.05.016
- Gaoyong Zhang, The affine Sobolev inequality, J. Differential Geom. 53 (1999), no. 1, 183–202. MR 1776095
Bibliographic Information
- Károly J. Böröczky
- Affiliation: Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences
- Email: carlos@renyi.hu
- Erwin Lutwak
- Affiliation: Department of Mathematics, Polytechnic Institute of New York University, Brooklyn, New York 11201
- Email: elutwak@poly.edu
- Deane Yang
- Affiliation: Department of Mathematics, Polytechnic Institute of New York University, Brooklyn, New York 11201
- ORCID: 0000-0002-4655-1428
- Email: dyang@poly.edu
- Gaoyong Zhang
- Affiliation: Department of Mathematics, Polytechnic Institute of New York University, Brooklyn, New York 11201
- Email: gzhang@poly.edu
- Received by editor(s): September 18, 2011
- Received by editor(s) in revised form: February 7, 2012
- Published electronically: June 5, 2012
- Additional Notes: The research of the first author was supported, in part, by EU FP7 IEF grant GEOSUMSET and OTKA 075016.
The research of the other three authors was supported, in part, by NSF Grant DMS-1007347. - © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 26 (2013), 831-852
- MSC (2010): Primary 52A40
- DOI: https://doi.org/10.1090/S0894-0347-2012-00741-3
- MathSciNet review: 3037788