## On an analogue of Titchmarsh’s divisor problem for holomorphic cusp forms

HTML articles powered by AMS MathViewer

- by Nigel J. E. Pitt PDF
- J. Amer. Math. Soc.
**26**(2013), 735-776 Request permission

## Abstract:

The Fourier coefficients $a(n)$ of a holomorphic cusp form for the modular group are considered at values $n=p-1$ for primes $p$ up to $X$, and their sum shown to be smaller than the trivial bound by a power of $X$. The same bound is also shown to hold for the sum of $\mu (n)a(n-1)$ for natural numbers $n$ up to $X$, where $\mu$ denotes the Möbius function. The proofs require establishing non-trivial bounds for sums of Kloosterman sums and shifted convolutions of the coefficients which are better in the ranges required than known estimates. These are then used to bound bilinear forms in $a(mn-1)$, which in conjunction with previous work of the author, slightly corrected here, proves the main results.## References

- Valentin Blomer,
*Shifted convolution sums and subconvexity bounds for automorphic $L$-functions*, Int. Math. Res. Not.**73**(2004), 3905–3926. MR**2104288**, DOI 10.1155/S1073792804142505 - Valentin Blomer and Gergely Harcos,
*The spectral decomposition of shifted convolution sums*, Duke Math. J.**144**(2008), no. 2, 321–339. MR**2437682**, DOI 10.1215/00127094-2008-038 - V. Blomer, G. Harcos, and P. Michel,
*A Burgess-like subconvex bound for twisted $L$-functions*, Forum Math.**19**(2007), no. 1, 61–105. Appendix 2 by Z. Mao. MR**2296066**, DOI 10.1515/FORUM.2007.003 - E. Bombieri, J. B. Friedlander, and H. Iwaniec,
*Primes in arithmetic progressions to large moduli*, Acta Math.**156**(1986), no. 3-4, 203–251. MR**834613**, DOI 10.1007/BF02399204 - Pierre Deligne,
*La conjecture de Weil. I*, Inst. Hautes Études Sci. Publ. Math.**43**(1974), 273–307 (French). MR**340258** - J.-M. Deshouillers and H. Iwaniec,
*Kloosterman sums and Fourier coefficients of cusp forms*, Invent. Math.**70**(1982/83), no. 2, 219–288. MR**684172**, DOI 10.1007/BF01390728 - W. Duke, J. B. Friedlander, and H. Iwaniec,
*A quadratic divisor problem*, Invent. Math.**115**(1994), no. 2, 209–217. MR**1258903**, DOI 10.1007/BF01231758 - Étienne Fouvry,
*Sur le problème des diviseurs de Titchmarsh*, J. Reine Angew. Math.**357**(1985), 51–76 (French). MR**783533**, DOI 10.1515/crll.1985.357.51 - Anton Good,
*On various means involving the Fourier coefficients of cusp forms*, Math. Z.**183**(1983), no. 1, 95–129. MR**701361**, DOI 10.1007/BF01187218 - James Lee Hafner,
*Explicit estimates in the arithmetic theory of cusp forms and Poincaré series*, Math. Ann.**264**(1983), no. 1, 9–20. MR**709858**, DOI 10.1007/BF01458047 - H. Halberstam,
*Footnote to the Titchmarsh-Linnik divisor problem*, Proc. Amer. Math. Soc.**18**(1967), 187–188. MR**204379**, DOI 10.1090/S0002-9939-1967-0204379-6 - Gergely Harcos,
*An additive problem in the Fourier coefficients of cusp forms*, Math. Ann.**326**(2003), no. 2, 347–365. MR**1990914**, DOI 10.1007/s00208-003-0421-1 - Henryk Iwaniec and Emmanuel Kowalski,
*Analytic number theory*, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR**2061214**, DOI 10.1090/coll/053 - M. Jutila,
*Transformations of exponential sums*, Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989) Univ. Salerno, Salerno, 1992, pp. 263–270. MR**1220470** - M. Jutila,
*A variant of the circle method*, Sieve methods, exponential sums, and their applications in number theory (Cardiff, 1995) London Math. Soc. Lecture Note Ser., vol. 237, Cambridge Univ. Press, Cambridge, 1997, pp. 245–254. MR**1635766**, DOI 10.1017/CBO9780511526091.016 - Matti Jutila,
*The additive divisor problem and its analogs for Fourier coefficients of cusp forms. I*, Math. Z.**223**(1996), no. 3, 435–461. MR**1417854**, DOI 10.1007/PL00004270 - Matti Jutila,
*The additive divisor problem and its analogs for Fourier coefficients of cusp forms. II*, Math. Z.**225**(1997), no. 4, 625–637. MR**1466405**, DOI 10.1007/PL00004323 - Henry H. Kim,
*Functoriality for the exterior square of $\textrm {GL}_4$ and the symmetric fourth of $\textrm {GL}_2$*, J. Amer. Math. Soc.**16**(2003), no. 1, 139–183. With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak. MR**1937203**, DOI 10.1090/S0894-0347-02-00410-1 - N. V. Kuznecov,
*The Petersson conjecture for cusp forms of weight zero and the Linnik conjecture. Sums of Kloosterman sums*, Mat. Sb. (N.S.)**111(153)**(1980), no. 3, 334–383, 479 (Russian). MR**568983** - Ju. V. Linnik,
*The dispersion method in binary additive problems*, American Mathematical Society, Providence, R.I., 1963. Translated by S. Schuur. MR**0168543** - Nigel John E. Pitt,
*Convolutions of automorphic L-series*, ProQuest LLC, Ann Arbor, MI, 1992. Thesis (Ph.D.)–Rutgers The State University of New Jersey - New Brunswick. MR**2716401** - Nigel J. E. Pitt,
*On shifted convolutions of $\zeta ^3(s)$ with automorphic $L$-functions*, Duke Math. J.**77**(1995), no. 2, 383–406. MR**1321063**, DOI 10.1215/S0012-7094-95-07711-4 - Gaetano Rodriquez,
*Sul problema dei divisori di Titchmarsh*, Boll. Un. Mat. Ital. (3)**20**(1965), 358–366 (Italian, with English summary). MR**0197409** - P. Sarnak,
*Three lectures on the Möbius function Randomness and Dynamics*, available at http://www.math.ias.edu/wam/2011/lectures. - Peter Sarnak,
*Estimates for Rankin-Selberg $L$-functions and quantum unique ergodicity*, J. Funct. Anal.**184**(2001), no. 2, 419–453. MR**1851004**, DOI 10.1006/jfan.2001.3783 - Peter Sarnak,
*Integrals of products of eigenfunctions*, Internat. Math. Res. Notices**6**(1994), 251 ff., approx. 10 pp.}, issn=1073-7928, review= MR**1277052**, doi=10.1155/S1073792894000280, DOI 10.1155/S1073792894000280 - Atle Selberg,
*On the estimation of Fourier coefficients of modular forms*, Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, R.I., 1965, pp. 1–15. MR**0182610** - E. C. Titchmarsh,
*A divisor problem*, Rend. Circ. Mat. Palermo**54**(1930), 414-429. - E. C. Titchmarsh,
*A divisor problem. Correction*, Rend. Circ. Mat. Palermo**57**(1933), 478-479. - Robert-C. Vaughan,
*Sommes trigonométriques sur les nombres premiers*, C. R. Acad. Sci. Paris Sér. A-B**285**(1977), no. 16, A981–A983 (French, with English summary). MR**498434**

## Additional Information

**Nigel J. E. Pitt**- Affiliation: Departamento de Matemática, Universidade de Brasília, DF 70910-900, Brazil
- Email: pitt@mat.unb.br
- Received by editor(s): August 8, 2011
- Received by editor(s) in revised form: November 18, 2011, and April 30, 2012
- Published electronically: October 11, 2012
- © Copyright 2012
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc.
**26**(2013), 735-776 - MSC (2010): Primary 11F11, 11F30; Secondary 11F72, 11N37
- DOI: https://doi.org/10.1090/S0894-0347-2012-00750-4
- MathSciNet review: 3037786