Stationary measures and invariant subsets of homogeneous spaces (II)
HTML articles powered by AMS MathViewer
- by Yves Benoist and Jean-François Quint;
- J. Amer. Math. Soc. 26 (2013), 659-734
- DOI: https://doi.org/10.1090/S0894-0347-2013-00760-2
- Published electronically: January 11, 2013
- PDF | Request permission
Abstract:
Let $G$ be a real Lie group, $\Lambda$ a lattice of $G$, $\mu$ a compactly supported probability measure on $G$, and $\Gamma$ the subgroup generated by the support of $\mu$. We prove that, when the Zariski closure of the adjoint group $\textrm {Ad }(\Gamma )$ is semisimple with no compact factor, every $\mu$-ergodic $\mu$-stationary probability measure on $G/\Lambda$ is homogeneous. We also prove similar results for $p$-adic Lie groups.References
- R. Aoun, Application des marches aléatoires à l’étude des sous-groupes des groupes linéaires, PhD thesis (2011).
- Y. Benoist, Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal. 7 (1997), no. 1, 1–47 (French, with English and French summaries). MR 1437472, DOI 10.1007/PL00001613
- Y. Benoist, J.-F. Quint, Lattices in $\mathcal S$-adic Lie groups, preprint (2010).
- Yves Benoist and Jean-François Quint, Mesures stationnaires et fermés invariants des espaces homogènes II, C. R. Math. Acad. Sci. Paris 349 (2011), no. 5-6, 341–345 (French, with English and French summaries). MR 2783332, DOI 10.1016/j.crma.2011.01.015
- Y. Benoist, J.-F. Quint Mesures stationnaires et fermés invariants des espaces homogènes II, CRAS (2010).
- Y. Benoist, J.-F. Quint Stationary measures and invariant subsets of homogeneous spaces (III), en preparation.
- Yves Benoist and Jean-Francois Quint, Random walks on finite volume homogeneous spaces, Invent. Math. 187 (2012), no. 1, 37–59. MR 2874934, DOI 10.1007/s00222-011-0328-5
- Y. Benoist, J.-F. Quint, Lattices in $\mathcal S$-adic Lie groups, preprint, 2010.
- Y. Benoist, J.-F. Quint, Random walks on semisimple groups.
- Y. Benoist, J.-F. Quint, On $p$-adic Lie groups.
- Philippe Bougerol and Jean Lacroix, Products of random matrices with applications to Schrödinger operators, Progress in Probability and Statistics, vol. 8, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 886674, DOI 10.1007/978-1-4684-9172-2
- Jean Bourgain, Alex Furman, Elon Lindenstrauss, and Shahar Mozes, Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus, J. Amer. Math. Soc. 24 (2011), no. 1, 231–280. MR 2726604, DOI 10.1090/S0894-0347-2010-00674-1
- C. Chabauty, Limites d’ensembles et théorie des nombres, Bull. Soc. Math. Fr. 78 (1950), 143-151.
- R. V. Chacon and D. S. Ornstein, A general ergodic theorem, Illinois J. Math. 4 (1960), 153–160. MR 110954
- S. G. Dani and G. A. Margulis, Limit distributions of orbits of unipotent flows and values of quadratic forms, I. M. Gel′fand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 91–137. MR 1237827
- J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-$p$-groups, London Mathematical Society Lecture Note Series, vol. 157, Cambridge University Press, Cambridge, 1991. MR 1152800
- Alex Eskin and Gregory Margulis, Recurrence properties of random walks on finite volume homogeneous manifolds, Random walks and geometry, Walter de Gruyter, Berlin, 2004, pp. 431–444. MR 2087794, DOI 10.1016/s0169-5983(04)00042-5
- Yves Guivarc’h and Albert Raugi, Propriétés de contraction d’un semi-groupe de matrices inversibles. Coefficients de Liapunoff d’un produit de matrices aléatoires indépendantes, Israel J. Math. 65 (1989), no. 2, 165–196 (French, with English summary). MR 998669, DOI 10.1007/BF02764859
- Jean-Romain Heu, Dynamical properties of groups of automorphisms on Heisenberg nilmanifolds, Geom. Dedicata 145 (2010), 89–101. MR 2600947, DOI 10.1007/s10711-009-9407-9
- Gregory Margulis, Problems and conjectures in rigidity theory, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 161–174. MR 1754775
- G. A. Margulis and G. M. Tomanov, Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math. 116 (1994), no. 1-3, 347–392. MR 1253197, DOI 10.1007/BF01231565
- S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability, Communications and Control Engineering Series, Springer-Verlag London, Ltd., London, 1993. MR 1287609, DOI 10.1007/978-1-4471-3267-7
- J.-F. Quint, Cônes limites des sous-groupes discrets des groupes réductifs sur un corps local, Transform. Groups 7 (2002), no. 3, 247–266 (French, with English summary). MR 1923973, DOI 10.1007/s00031-002-0013-2
- M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR 507234
- Marina Ratner, On Raghunathan’s measure conjecture, Ann. of Math. (2) 134 (1991), no. 3, 545–607. MR 1135878, DOI 10.2307/2944357
- Marina Ratner, Raghunathan’s conjectures for Cartesian products of real and $p$-adic Lie groups, Duke Math. J. 77 (1995), no. 2, 275–382. MR 1321062, DOI 10.1215/S0012-7094-95-07710-2
- J. Tits, Reductive groups over local fields, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp. 29–69. MR 546588
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
Bibliographic Information
- Yves Benoist
- Affiliation: CNRS, Université Paris-Sud Bat.425, 91405 Orsay, France
- MR Author ID: 213892
- Email: yves.benoist@math.u-psud.fr
- Jean-François Quint
- Affiliation: CNRS – Université Paris-Nord, LAGA, 93430 Villetaneuse, France
- Email: quint@math.univ-paris13.fr
- Received by editor(s): July 8, 2011
- Received by editor(s) in revised form: October 9, 2012
- Published electronically: January 11, 2013
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: J. Amer. Math. Soc. 26 (2013), 659-734
- MSC (2010): Primary 22E40, 37C40, 37C85
- DOI: https://doi.org/10.1090/S0894-0347-2013-00760-2
- MathSciNet review: 3037785